Tuning Organic Microcrystal Morphologies through Crystal Engineering Strategies toward Anisotropic Optical Waveguide.

J Phys Chem Lett

Engineering Research Center of Organic and Polymer Optoelectronic Materials, Ministry of Education, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

Published: May 2021

The construction of organic optoelectronic materials with desirable size and morphology remains a challenge now. Crystal engineering strategies (polymorphs and cocrystals) provide convenience for tailoring molecular packing and further controlling the growth morphology and photofunctionality of materials. Herein, we prepare polymorphic 2D plate crystals and 3D microhelixes by assembly of a cyanostilbene derivative (2-(3',5'-bis(trifluoromethyl)-biphenyl-4-yl)-3-(4-(pyridin-4-yl)phenyl)acrylonitrile, CF-CN-Py). The former emits blue emission, while the latter emits green emission. Different crystallization environments contribute to the adjustable morphologies. Then, novel cocrystals are fabricated with the introduction of 1,4-diiodotetrafluorobenzene (FDIB) to CF-CN-Py. Both molecular conformation and packing are totally changed in the cocrystal system. Such cocrystal displays a 1D sky-blue emissive rod shape on account of a long-range ordered π-stacking of molecules. In addition, the 2D plate crystal and 1D rod cocrystal are further applied to optical waveguides. In the plate crystal, a packing of transition dipole moment (μ) inclined to the upper surface leads to an anisotropic optical waveguide. In the cocrystal, owing to the nearly horizontal μ orientation, the cocrystal exhibits light propagation along the primary growth direction and a low optical loss coefficient. The present study supplies an effective way to construct materials with controlled morphology and optical waveguide.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.1c00769DOI Listing

Publication Analysis

Top Keywords

optical waveguide
12
crystal engineering
8
engineering strategies
8
anisotropic optical
8
plate crystal
8
optical
5
cocrystal
5
tuning organic
4
organic microcrystal
4
microcrystal morphologies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!