Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To study biological processes , biomaterials-based engineering solutions to reproduce the gradients observed in tissues are necessary. We present a platform for the 3D bioprinting of functionally graded biomaterials based on carboxylated agarose, a bioink amendable by extrusion bioprinting. Using this bioink, objects with a gradient of stiffness and gradient of cell concentration were printed. Functionalization of carboxylated agarose with maleimide moieties that react in minutes with a cysteine-terminated cell-adhesion peptide allowed us to print objects with a gradient of an immobilized peptide. This approach paves the way toward the development of tissue mimics with gradients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8207502 | PMC |
http://dx.doi.org/10.1021/acsbiomaterials.1c00183 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!