A facile and effective strategy for the preparation of a series of ferricenium complexes bearing either electron-donating or electron-withdrawing substituents with weakly coordinating anions such as [B(C6F5)4]- or SbF6- is reported. These systems were thoroughly investigated for their ground state electronic structures in both solution and solid states using infrared (IR) and nuclear magnetic resonance (NMR) spectroscopies as well as single crystal X-ray crystallography and electrochemical measurements. The X-ray structures of the six electron-deficient ferricenium derivatives are of particular interest as only a handful (∼5) of such derivatives have been structurally characterized to date. Comparison of the structural data for both neutral and oxidized derivatives reveals that the nature of the substituents on the cyclopentadienyl (Cp) ligands displays a more significant impact on the metal-ligand separations (FeCt) in the oxidized species than in their neutral analogs. Our 1H-NMR measurements corroborate that in the neutral ferrocene derivatives, electron-donating ring substitutions lead to a greater shielding of the ring protons while electron-withdrawing groups via induction deshield the nearby ring protons. However, the data for the paramagnetic ferricenium derivatives reveals that this substitutional behavior is more complex and fundamentally reversed, which is further supported by our structural studies. We ascribe this reversal of behavior in the ferricenium derivatives to the δ back-donation from the iron atom into the Cp rings which can lead to the overall shielding of the ring protons. Interestingly, our NMR results for the electron-deficient ferricenium derivatives in solution also indicate a direct correlation between the solvent dielectric constant and the energy barrier for rotation around the metal-ligand bond in these systems, whereas such a correlation is absent or not significant in the case of the electron-rich ferricenium species or the corresponding neutral ferrocene analogs. In this work, we also present the electrochemical behavior of the corresponding ferricenium/ferrocene redox couples including potential values (E1/2), peak-to-peak separation (ΔE1/2), and diffusion coefficients (D) of the redox active species in order to provide a concise outline of these data in one place. Our electrochemical studies involved three different solvents and two supporting electrolytes. Notably, our findings point to the significant effect of ion-pairing in lowering the energy necessary for reduction of the ferricenium ion and E1/2 in lower-polarity media. This has significant implications in applications of the ferrocene or ferricenium derivatives as redox agents in low-polarity solvents where an accurate determination of redox potential is critical.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1dt01192hDOI Listing

Publication Analysis

Top Keywords

ferricenium derivatives
24
ring protons
12
ferricenium
9
derivatives
9
weakly coordinating
8
coordinating anions
8
electron-deficient ferricenium
8
derivatives reveals
8
neutral ferrocene
8
shielding ring
8

Similar Publications

Revitalizing Dead Zinc with Ferrocene/Ferrocenium Redox Chemistry for Deep-Cycle Zinc Metal Batteries.

Angew Chem Int Ed Engl

January 2025

School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 210094, Nanjing, People's Republic of China.

Aqueous zinc (Zn) batteries are highly desirable for sustainable and large-scale electrochemical energy storage technologies. However, the ceaseless dendrite growth and the derived dead Zn are principally responsible for the capacity decay and insufficient lifespan. Here, we propose a dissolved oxygen-initiated revitalization strategy to reactivate dead Zn via ferrocene redox chemistry, which can be realized by incorporating a trace amount of poly(ethylene glycol) as a solubilizer to improve the solubility of water-insoluble ferrocene derivatives.

View Article and Find Full Text PDF

Mild magnetic hyperthermia therapy (MMHT) holds great potential in treating deep-seated tumors, but its efficacy is impaired by the upregulation of heat shock proteins (HSPs) during the treatment process. Herein, Lac-FcMOF, a lactose derivative (Lac-NH ) modified paramagnetic metal-organic framework (FcMOF) with magnetic hyperthermia property and thermal stability, has been developed to enhance MMHT therapeutic efficacy. In vitro studies showed that Lac-FcMOF aggravates two-way regulated redox dyshomeostasis (RDH) via magnetothermal-accelerated ferricenium ions-mediated consumption of glutathione and ferrocene-catalyzed generation of ∙OH to induce oxidative damage and inhibit heat shock protein 70 (HSP70) synthesis, thus significantly enhancing the anti-cancer efficacy of MMHT.

View Article and Find Full Text PDF

A facile and effective strategy for the preparation of a series of ferricenium complexes bearing either electron-donating or electron-withdrawing substituents with weakly coordinating anions such as [B(C6F5)4]- or SbF6- is reported. These systems were thoroughly investigated for their ground state electronic structures in both solution and solid states using infrared (IR) and nuclear magnetic resonance (NMR) spectroscopies as well as single crystal X-ray crystallography and electrochemical measurements. The X-ray structures of the six electron-deficient ferricenium derivatives are of particular interest as only a handful (∼5) of such derivatives have been structurally characterized to date.

View Article and Find Full Text PDF

Hybrid density functionals have been regularly applied in state-of-the-art computational models for predicting reduction potentials. Benchmark calculations of the absolute reduction potential of ferricenium/ferrocene couple, the IUPAC-proposed reference in nonaqueous solution, include the B3LYP/6-31G(d)/LanL2TZf protocol. We used this procedure to calculate ionization energies and reduction potentials for a comprehensive set of ferrocene derivatives.

View Article and Find Full Text PDF

Polymers with pendant ferrocenes.

Chem Soc Rev

October 2016

Universität Kassel, Institut für Chemie und CINSaT, Heinrich-Plett-Straße 40, 34132 Kassel, Germany.

The tailoring of smart material properties is one of the challenges in materials science. The unique features of polymers with pendant ferrocene units, either as ferrocenyl or ferrocenediyl groups, provide electrochemical, electronic, optoelectronic, catalytic, and biological properties with potential for applications as smart materials. The possibility to tune or to switch the properties of such materials relies mostly on the redox activity of the ferrocene/ferricenium couple.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!