Toxicity Assessment of Nano-ZnO Exposure on the Human Intestinal Microbiome, Metabolic Functions, and Resistome Using an In Vitro Colon Simulator.

Environ Sci Technol

Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.

Published: May 2021

AI Article Synopsis

  • Nano-ZnO is commonly found in food, medicine, and drinking water, raising concerns about its potential health risks, particularly on the human gut microbiome.
  • A study using an in vitro colon simulator revealed that nano-ZnO decreases the production of beneficial short-chain fatty acids (SCFAs) and alters the composition and diversity of gut bacteria in a dose-dependent manner.
  • While gut microbiota diversity tends to recover after exposure ends, SCFAs remain low, and different concentrations of nano-ZnO affect antibiotic resistance genes variably, with medium levels reducing some ARGs while low levels increase tetracycline resistance genes.

Article Abstract

Nano-ZnO, as a commonly used nanomaterial, has been found in drinking water, food, and medicine; therefore, it poses potential health risks via the digestion system. However, little is known about the toxicity of nano-ZnO on the human intestinal microbiome, which plays critical roles in human health. This study comprehensively investigated the impact of nano-ZnO on the human gut microbiome, metabolic functions, and resistome using an in vitro colon simulator. Nano-ZnO induced concentration-dependent decreases in the production of short-chain fatty acids (SCFAs). Metagenomic analysis revealed that nano-ZnO not only led to dose-dependent shifts in the composition and diversity of the gut microbiota but also changed the key functional pathways of the gut microbiome. Although the diversity of the gut microbiota basically recovered after stopping exposure to nano-ZnO, SCFAs still showed a concentration-dependent decrease. Furthermore, although a medium concentration of nano-ZnO (2.5 mg/L) reduced the abundance of many antibiotic resistance genes (ARGs) by inhibiting the growth of related host bacteria, a low concentration of nano-ZnO (0.1 mg/L) greatly enriched the abundance of tetracycline resistance genes. Our findings provide evidence that nano-ZnO can impact the diversity, metabolism, and functional pathways of the human gut microbiome, as well as the gut resistome, highlighting the potential health effects of nanoparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.1c00573DOI Listing

Publication Analysis

Top Keywords

gut microbiome
12
nano-zno
10
human intestinal
8
intestinal microbiome
8
microbiome metabolic
8
metabolic functions
8
functions resistome
8
resistome vitro
8
vitro colon
8
colon simulator
8

Similar Publications

Partially hydrolyzed guar gum alleviates neurological deficits and gastrointestinal dysfunction in mice with traumatic brain injury.

Neurosurg Rev

January 2025

Department of Critical Care Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Zhou shan hui shui Community,199 Hailing South Road, Taizhou, Jiangsu Province, 225300, China.

Traumatic brain injury (TBI)-associated neuroinflammation and neurotoxicity can induce gastrointestinal dysfunction through the brain-gut axis. Partially hydrolyzed guar gum (PHGG) was demonstrated to exert beneficial health effects by altering gut microbiota and short-chain fatty acids (SCFAs) production. Our study aimed to explore the effects of PHGG on gastrointestinal dysfunction in TBI mouse models.

View Article and Find Full Text PDF

Unlabelled: Many animals contain a species-rich and diverse gut microbiota that likely contributes to several host-supportive services that include diet processing and nutrient provisioning. Loss of microbiome taxa and their associated metabolic functions as result of perturbations may result in loss of microbiome-level services and reduction of metabolic capacity. If metabolic functions are shared by multiple taxa (i.

View Article and Find Full Text PDF

Background: Precision nutrition-based methods develop tailored interventions and/or recommendations accounting for determinants of intra- and inter-individual variation in response to the same diet, compared to current 'one-size-fits-all' population-level approaches. Determinants may include genetics, current dietary habits and eating patterns, circadian rhythms, health status, gut microbiome, socioeconomic and psychosocial characteristics, and physical activity. ​​​​In this systematic review, we examined the evidence base for the effect of interventions based on precision nutrition approaches on overweight and obesity in children and adolescents to help inform future research and global guidelines.

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) is a major obstacle in liver transplantation, especially with steatotic donor livers. Dysbiosis of the gut microbiota has been implicated in modulating IRI, and plays a pivotal role in regulating host inflammatory and immune responses, but its specific role in liver transplantation IRI remains unclear. This study explores whether can mitigate IRI and its underlying mechanisms.

View Article and Find Full Text PDF

The role of the early-life gut microbiome in childhood asthma.

Gut Microbes

December 2025

Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital, Herlev-Gentofte, Gentofte, Denmark.

Asthma is a chronic disease affecting millions of children worldwide, and in severe cases requires hospitalization. The etiology of asthma is multifactorial, caused by both genetic and environmental factors. In recent years, the role of the early-life gut microbiome in relation to asthma has become apparent, supported by an increasing number of population studies, research, and intervention trials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!