The middle cerebral artery occlusion (MCAO) model has been extensively applied to study ischaemic stroke. This study attempted to clarify effect of bone marrow stromal cells (BMSCs) on infarct injury of MCAO rats. BMSCs were isolated and identified by staining CD29/CD44 and CD31/CD45. CX3CL1 silencing vector (pLVX-shRNA-CX3CL1) was generated and infected to BMSCs. pLVX-shRNA-CX3CL1 infected BMSCs were transplanted into brain tissue of MCAO rats. Real-time PCR was used to determine CX3CL1 expression. Infarct areas were stained with TTC to evaluate infarct size. Double-staining immunofluorescence was conducted to determine anti-inflammatory type CD206 and pro-inflammatory type tumour necrosis factor a (TNF-a) microglia. Isolated BMSCs were positively presented for CD29/CD44, and negatively for CD31/CD45. CX3CL1 was significantly lower in the BMSC + pLVX-shRNA2-CX3-CL1 group compared to the BMSCs + pLVX group (p < 0.05). According to TTC and neurological scores, MCAO rats were successfully generated. BMSCs transplantation significantly increased CD206 microglia and decreased TNF-a microglia. However, shRNA-CX3CL1-infected BMSCs remarkably reduced CD206 microglia and enhanced TNF-a microglia compared to the MCAO + BMSCs group. In conclusion, BMSCs reverse microglia from pro-inflammatory type TNF-a microglia to anti-inflammatory type CD206 microglia in the infarct region of MCAO rats (3rd to 7th days post BMSC transplantation), through triggering of CX3CL1 secretion. Therefore, the potential effects of CX3CL1 secreted by BMSCs would provide an insight for stem cell-dependent therapeutic strategies in treating ischaemic stroke-associated disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5114/fn.2021.105129 | DOI Listing |
Nutrients
November 2024
Laboratory of Neurochemistry and Cellular Biology, Department of Biofunction, Health Sciences Institute, Federal University of Bahia, Salvador 40231-300, Brazil.
Background: Reactive astrogliosis and microgliosis are coordinated responses to CNS insults and are pathological hallmarks of traumatic brain injury (TBI). In these conditions, persistent reactive gliosis can impede tissue repopulation and limit neurogenesis. Thus, modulating this phenomenon has been increasingly recognized as potential therapeutic approach.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China. Electronic address:
Lactate is a potent regulator of neuroinflammation. We recently demonstrated that lactate alleviated neuronal injury via HIF-1α-regulated microglial inflammation after oxygen-glucose deprivation (OGD). However, the underlying mechanisms and the effect of lactate on microglial responses after ischemic stroke remained unknown.
View Article and Find Full Text PDFDrug Dev Res
December 2024
Nursing Department, Medical College, Hebei University of Engineering, Handan, China.
Cerebral ischemia/reperfusion injury is one of the main causes of neuronal damage. Neuron ferroptosis and microglia polarization are considered as critical processes during cerebral ischemia/reperfusion. Adipocyte enhancer-binding protein 1 (AEBP1) usually acts as a transcriptional repressor which is involved in various diseases.
View Article and Find Full Text PDFActas Esp Psiquiatr
December 2024
Geriatric Medicine Department, Affiliated Hospital of Shandong Second Medical University, 261041 Weifang, Shandong, China.
Background: Alzheimer's disease (AD) is a burdening disease and is the main cause of dementia. Quercetin (Que), an antioxidant, plays potential roles in treating age-related disorders, including AD. This study aimed to validate the effects of Que on AD and explore the underlying mechanisms.
View Article and Find Full Text PDFBrain Res Bull
December 2024
Department Of Orthopdics, The First People's Hospital of Changzhou,Changzhou 213000, China. Electronic address:
Objective: This study aimed to investigate the effect of Ubiquitin-Specific Peptidase 22 (USP22) on the inflammatory response mediated by BV-2 mouse microglia and explore the role of the PU box binding protein 1 (PU.1)/NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome in the USP22-induced polarization of BV-2 cells.
Methods: The BV-2 mouse microglia line was cultured in vitro, and plasmid and siRNA transfection was performed to overexpress or knockdown USP22.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!