Stress shielding of the proximal humerus following total shoulder arthroplasty (TSA) can promote unfavorable bone remodeling, especially for osteoporotic patients. The objective of this finite element (FE) study was to determine if a hollow, rather than solid, titanium stem can mitigate this effect for healthy, osteopenic, and osteoporotic bone. Using a population-based model of the humerus, representative average healthy, osteopenic, and osteoporotic humerus FE models were created. For each model, changes in bone and implant stresses following TSA were evaluated for different loading scenarios and compared between solid versus hollow-stemmed implants. For cortical bone, using an implant decreased von Mises stress with respect to intact values up to 34.4%, with a more pronounced effect at more proximal slices. In the most proximal slice, based on changes in strain energy density, hollow-stemmed implants outperformed solid-stemmed ones through reducing cortical bone volume with resorption potential by 11.7% ± 2.1% (p = .01). For cortical bone in this slice, the percentage of bone with resorption potential for the osteoporotic bone was greater than the healthy bone by 8.0% ± 1.4% using the hollow-stemmed implant (p = .04). These results suggest a small improvement in bone-implant mechanics using hollow-stemmed humeral implants and indicate osteoporosis could exacerbate stress shielding to some extent. The hollow stems maintained adequate strength and using even thinner walls may further reduce stress shielding. After further developing these models, future studies could yield optimized implant designs tuned for varying bone qualities.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.25076DOI Listing

Publication Analysis

Top Keywords

stress shielding
12
cortical bone
12
bone
11
bone qualities
8
healthy osteopenic
8
osteopenic osteoporotic
8
osteoporotic bone
8
bone implant
8
hollow-stemmed implants
8
resorption potential
8

Similar Publications

Following implantation, infections, inflammatory reactions, corrosion, mismatches in the elastic modulus, stress shielding and excessive wear are the most frequent reasons for orthopedic implant failure. Natural polymer-based coatings showed especially good results in achieving better cell attachment, growth and tissue-implant integration, and it was found that the inclusions of nanosized fillers in the coating structure improves biomineralization and consequently implant osseointegration, as the nanoparticles represent calcium phosphate nucleation centers and lead to the deposition of highly organized hydroxyapatite crystallites on the implant surface. In this study, magnetic nanoparticles synthesized by the co-precipitation method were used for the preparation of cellulose acetate composite coatings through the phase-inversion method.

View Article and Find Full Text PDF

Unlabelled: Mandibular reconstruction is essential for restoring both function and aesthetics after segmental resection due to tumoral pathology. This study aimed to conduct a comparative analysis of three reconstruction strategies for defects resulting from segmental mandibular resection, utilizing finite element analysis (FEA).

Methods: A digital model of the mandible was created from CBCT data and optimized for FEA.

View Article and Find Full Text PDF

This study investigates the therapeutic efficacy of ghrelin in alleviating sepsis-induced intestinal damage, focusing on its potential to inhibit ferroptosis and protect intestinal barrier integrity. This study evaluates the therapeutic efficacy of intraperitoneal ghrelin (80 μg/kg) and Ferrostatin-1 (5 mg/kg) using a cecal ligation and puncture (CLP) model in C57BL/6 mice to determine their potential in alleviating sepsis-induced intestinal damage. The investigation focuses on the impacts of ghrelin and Ferrostatin-1 on bacterial load, intestinal morphology, systemic inflammation, oxidative stress, and ferroptosis markers.

View Article and Find Full Text PDF

Multi-Scale Characterisation and Mechanical Adhesion in PVD-Deposited Ca-SZ Coating for Implantable Medical Devices.

Biomedicines

December 2024

Jean Lamour Institute, Department of Micro and Nanomechanics for Life, University of Lorraine, UMR 7198, 54011 Nancy, France.

Oral implantology faces a multitude of technical challenges in light of current clinical experience, underlining the need for innovation in implantable medical devices in both mechanical and biological terms. This study explores the influence of the thickness factor of calcium-doped zirconia (Ca-SZ) coatings deposited by PVD on their intrinsic mechanical properties and the determinism of the latter on adhesion to the TA6V alloy substrate after mechanical loading for applications in dental implantology. Three separate thicknesses of 250 nm, 450 nm and 850 nm were evaluated in terms of mechanical strength, modulus of elasticity and adhesion to the substrate, in accordance with ISO 20502:2005.

View Article and Find Full Text PDF

Dislocation of segments in shield tunnels significantly contributes to joint leakage, making it crucial to identify the critical dislocation amount of segment linings. To explore the waterproofing mechanism of sealing gaskets under water pressure, a structural coupling finite element analysis model was created. This model simulates water intrusion dynamics at segment joints, analyzing contact stress distribution and waterproof performance across various dislocation amounts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!