The SARS-CoV-2 viral pandemic has induced a global health crisis, which requires more in-depth investigation into immunological responses to develop effective treatments and vaccines. To understand protective immunity against COVID-19, we screened over 60,000 asymptomatic individuals in the Southeastern United States for IgG antibody positivity against the viral Spike protein, and approximately 3% were positive. Of these 3%, individuals with the highest anti-S or anti-RBD IgG level showed a strong correlation with inhibition of ACE2 binding and cross-reactivity against non-SARS-CoV-2 coronavirus S-proteins. We also analyzed samples from 94 SARS-CoV-2 patients and compared them with those of asymptomatic individuals. SARS-CoV-2 symptomatic patients had decreased antibody responses, ACE2 binding inhibition, and antibody cross-reactivity. Our study shows that healthy individuals can mount robust immune responses against SARS-CoV-2 without symptoms. Furthermore, IgG antibody responses against S and RBD may correlate with high inhibition of ACE2 binding in individuals tested for SARS-CoV-2 infection or post vaccination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087581 | PMC |
http://dx.doi.org/10.1016/j.isci.2021.102489 | DOI Listing |
Front Immunol
December 2024
Laboratory of Molecular Medicine, Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
Throughout the COVID-19 pandemic, the emergence of new viral variants has challenged public health efforts, often evading antibody responses generated by infections and vaccinations. This immune escape has led to waves of breakthrough infections, raising questions about the efficacy and durability of immune protection. Here we focus on the impact of SARS-CoV-2 Delta and Omicron spike mutations on ACE-2 receptor binding, protein stability, and immune response evasion.
View Article and Find Full Text PDFCommun Biol
December 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
Study of mechanisms by which antibodies recognize different viral strains is necessary for the development of new drugs and vaccines to treat COVID-19 and other infections. Here, we report 2.5 Å cryo-EM structure of the SARS-CoV-2 Delta trimeric S-protein in complex with Fab of the recombinant analog of REGN10987 neutralizing antibody.
View Article and Find Full Text PDFElife
December 2024
Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
An unprecedented amount of SARS-CoV-2 data has been accumulated compared with previous infectious diseases, enabling insights into its evolutionary process and more thorough analyses. This study investigates SARS-CoV-2 features as it evolved to evaluate its infectivity. We examined viral sequences and identified the polarity of amino acids in the receptor binding motif (RBM) region.
View Article and Find Full Text PDFA positive-sense single-stranded RNA virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), caused the coronavirus disease 2019 (COVID-19) pandemic that devastated the world. While this is a respiratory virus, one feature of the SARS-CoV-2 infection was recognized to cause pathogenesis of other organs. Because the membrane fusion protein of SARS-CoV-2, the spike protein, binds to its major host cell receptor angiotensin-converting enzyme 2 (ACE2) that regulates a critical mediator of cardiovascular diseases, angiotensin II, COVID-19 is largely associated with vascular pathologies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!