Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102252 | PMC |
http://dx.doi.org/10.21037/cdt-20-361 | DOI Listing |
Adv Mater
January 2025
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
Supported nanoparticles incorporating catalytically attractive nonmetal elements have gained significant attention as a promising strategy for enhancing catalytic activity in various industrial applications. This study presents an innovative one-pot synthesis method for fabricating hybrid catalysts, which simultaneously modifies surface properties through the precipitation of nanoparticles with the concurrent incorporation of nonmetal elements. The underlying concept is to synchronize the temperature required for particle formation with that of nonmetal incorporation by adjusting the oxygen chemical potential of the host oxide.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
The utilization of 2D materials as catalysts has garnered significant attention in recent years, primarily due to their exceptional features including high surface area, abundant exposed active sites, and tunable physicochemical properties. The unique geometry of 2D materials imparts them with versatile active sites for catalysis, including basal plane, interlayer, defect, and edge sites. Among these, edge sites hold particular significance as they not only enable the activation of inert 2D catalysts but also serve as platforms for engineering active sites to achieve enhanced catalytic performance.
View Article and Find Full Text PDFLangmuir
January 2025
Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.
The preference of water self-ions (hydronium and hydroxide) toward air/oil-water interfaces is one of the hottest topics in water research due to its importance for understanding properties, phenomena, and reactions of interfaces. In this work, we performed enhanced-sampling molecular dynamics simulations based on state-of-the-art neural network potentials with approximate M06-2X accuracy to investigate the propensity of hydronium and hydroxide ions at air/oil(decane)-water interfaces, which can simultaneously describe well the water autoionization process forming these ions, the recombination of ions, and the ionic distribution along the normal distance to the interface by employing a set of appropriate Voronoi collective variables. A stable ionic double-layer distribution is observed near the air-water interface, while the distribution is different at oil-water interfaces, where hydronium tends to be repelled from the interface into the bulk water, whereas hydroxide, with an interfacial stabilization free energy of -0.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
Colloidal quantum dots (QDs) are promising emitters for biological applications because of their excellent fluorescence, convenient surface modification, and photostability. However, the toxic cadmium composition in the state-of-the-art QDs and their inferior properties in the aqueous phase greatly restrict further use. The performance of water-soluble indium phosphide (InP) QDs lags far behind those of Cd-containing counterparts due to the lack of effective surface protection.
View Article and Find Full Text PDFMol Pharm
January 2025
Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic.
Lipid-mediated delivery of active pharmaceutical ingredients (API) opened new possibilities in advanced therapies. By encapsulating an API into a lipid nanocarrier (LNC), one can safely deliver APIs not soluble in water, those with otherwise strong adverse effects, or very fragile ones such as nucleic acids. However, for the rational design of LNCs, a detailed understanding of the composition-structure-function relationships is missing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!