Genome-wide association mapping in maize: status and prospects.

3 Biotech

Department of Genetics and Plant Breeding, Institute of Agriculltural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh India.

Published: May 2021

Unlabelled: Genome-wide association study (GWAS) provides a robust and potent tool to retrieve complex phenotypic traits back to their underlying genetics. Maize is an excellent crop for performing GWAS due to diverse genetic variability, rapid decay of linkage disequilibrium, availability of distinct sub-populations and abundant SNP information. The application of GWAS in maize has resulted in successful identification of thousands of genomic regions associated with many abiotic and biotic stresses. Many agronomic and quality traits of maize are severely affected by such stresses and, significantly affecting its growth and productivity. To improve productivity of maize crop in countries like India which contribute only 2% to the world's total production in 2019-2020, it is essential to understand genetic complexity of underlying traits. Various DNA markers and trait associations have been revealed using conventional linkage mapping methods. However, it has achieved limited success in improving polygenic complex traits due to lower resolution of trait mapping. The present review explores the prospects of GWAS in improving yield, quality and stress tolerance in maize besides, strengths and challenges of using GWAS for molecular breeding and genomic selection. The information gathered will facilitate elucidation of genetic mechanisms of complex traits and improve efficiency of marker-assisted selection in maize breeding.

Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-021-02799-4.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8085158PMC
http://dx.doi.org/10.1007/s13205-021-02799-4DOI Listing

Publication Analysis

Top Keywords

genome-wide association
8
complex traits
8
maize
7
gwas
5
traits
5
association mapping
4
mapping maize
4
maize status
4
status prospects
4
prospects unlabelled
4

Similar Publications

A genome-wide atlas of human cell morphology.

Nat Methods

January 2025

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

A key challenge of the modern genomics era is developing empirical data-driven representations of gene function. Here we present the first unbiased morphology-based genome-wide perturbation atlas in human cells, containing three genome-wide genotype-phenotype maps comprising CRISPR-Cas9-based knockouts of >20,000 genes in >30 million cells. Our optical pooled cell profiling platform (PERISCOPE) combines a destainable high-dimensional phenotyping panel (based on Cell Painting) with optical sequencing of molecular barcodes and a scalable open-source analysis pipeline to facilitate massively parallel screening of pooled perturbation libraries.

View Article and Find Full Text PDF

With the rapid advancement of proteomics, numerous scholars have investigated the intricate relationships between plasma proteins and various diseases. Therefore, this study aims to elucidate the relationship between BDH1 and type 2 diabetes using Mendelian randomization (MR) and to identify novel targets for the prevention and treatment of type 2 diabetes through proteomics. This study primarily employed the Mendelian Randomization (MR) method, leveraging genetic data from numerous large-scale, publicly accessible genome-wide association studies (GWAS).

View Article and Find Full Text PDF

The Tapetum Determinant 1 (TPD1) family proteins are known to play a crucial role in the regulation of reproduction in plants, including Cenchrus americanus (pearl millet). However, members of TPD1 family proteins have not been fully identified. The current study aims to identify and characterize the TPD1 family proteins in Cenchrus americanus (L.

View Article and Find Full Text PDF

5-Methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are crucial epigenetic modifications in eukaryotic genomic DNA that regulate gene expression and are associated with the occurrence of various cancers. Here, we combined bisulfite conversion with 4-acetamido-2,2,6,6-tetramethyl-1-oxopiperridinium tetrafluoroborate (ACTBF, TCI) oxidation to develop a label-free and sequence-independent isothermal amplification (BTIA) assay for a genome-wide 5mC and 5hmC analysis. The BTIA strategy can distinguish 5mC and 5hmC signatures from other bases with high sensitivity and good specificity, avoiding sophisticated chemical modifications and expensive protein labeling.

View Article and Find Full Text PDF

Objectives: This study aims to use Mendelian randomisation to identify the causal relationship between a spectrum of 41 inflammatory cytokines and the development of oropharyngeal cancer.

Methods: This study investigated genetic variants that have been associated with oral and oropharyngeal cancer using data from a large GWAS. Inflammatory cytokine data were obtained from 8293 asymptomatic individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!