The single sucrose gap technique was employed to study the electrically induced automaticity in rabbit papillary muscles. When the potential was clamped at the level of the "maximum diastolic potential" following the first spike of automaticity an initial decline of the outward ionic current with subsequent activation of the delayed potassium current was observed. The initial decline was potential-sensitive with a maximum at approximately -2 mV; it diminished when the rate of stimulation increased and was abolished with 4-aminopyridine plus Sr2+. It is suggested that the transient outward current determines the development of the "pacemaker potential" after the first spike of electrically induced automaticity in rabbit papillary muscles.

Download full-text PDF

Source

Publication Analysis

Top Keywords

transient outward
8
outward current
8
electrically induced
8
induced automaticity
8
automaticity rabbit
8
rabbit papillary
8
papillary muscles
8
potential" spike
8
initial decline
8
"pacemaker" function
4

Similar Publications

Introduction: Neonatal seizures are the most common clinical manifestation of neurological dysfunction in newborns, with an incidence ranging from 1 to 5‰. However, the therapeutic efficacy of current pharmacological treatments remains suboptimal. This study aims to utilize genetically modified hamsters with hypertriglyceridaemia (HTG) to investigate the effects of elevated triglycerides on neuronal excitability and to elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Fibrotic cardiomyopathy represents a significant pathological condition characterized by the interaction between cardiomyocytes and fibroblasts in the heart, and it currently lacks an effective cure. In vitro platforms, such as engineered heart tissue (EHT) developed through the co-culturing of cardiomyocytes and fibroblasts, are under investigation to elucidate and manipulate these cellular interactions. We present the first integration of mathematical electrophysiological models that encapsulate fibroblast-cardiomyocyte interactions with experimental EHT studies to identify and modulate the ion channels governing these dynamics.

View Article and Find Full Text PDF

Background: The ionic mechanism underlying Brugada syndrome (BrS) arises from an imbalance in transient outward current flow between the epicardium and endocardium. Previous studies report that artemisinin, originally derived from a Chinese herb for antimalarial use, inhibits the Ito current in canines. In a prior study, we showed the antiarrhythmic effects of artemisinin in BrS wedge preparation models.

View Article and Find Full Text PDF

In contrast to the traditional perspective that thermal fluctuations are insignificant in surface dynamics, here we report their influence on surface reaction dynamics. Using real-time low-energy electron microscopy imaging of NiAl(100) under both vacuum and O atmospheres, we demonstrate that transient temperature variations substantially alter the direction of atom diffusion between the surface and bulk, leading to markedly different oxidation outcomes. During heating, substantial outward diffusion of atoms from the bulk to the surface results in step growth.

View Article and Find Full Text PDF
Article Synopsis
  • Specialized heat-sensitive neurons in the skin relay heat sensations, with the sodium-activated potassium channel Slick playing a significant role in controlling noxious heat responses.
  • Researchers created mice lacking Slick in specific sensory neurons (SNS-Slick mice) and found these mice had quicker responses to painful heat tests compared to normal mice.
  • Further experiments revealed that Slick works alongside the heat sensor TRPM3, suggesting that Slick helps to inhibit pain responses by modulating TRPM3 activity in sensory neurons.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!