Purpose Of Review: Partial differential equation (PDE) mathematical models of biological systems and the simulation approaches used to solve them are widely used to test hypotheses and infer regulatory interactions based on optimization of the PDE model against the observed data. In this review, we discuss the ability of powerful machine learning methods to accelerate the parametric screening of biophysical informed- PDE systems.
Recent Findings: A major shortcoming in more broad adaptation of PDE-based models is the high computational complexity required to solve and optimize the models and it requires many simulations to traverse the very high-dimensional parameter spaces during model calibration and inference tasks. For instance, when scaling up to tens of millions of simulations for optimization and sensitivity analysis of the PDE models, compute times quickly extend from months to years for sufficient coverage to solve the problems. For many systems, this brute-force approach is simply not feasible. Recently, neural network metamodels have been shown to be an efficient way to accelerate PDE model calibration and here we look at the benefits and limitations in extending the PDE acceleration methods to improve optimization and sensitivity analysis.
Summary: We use an example simulation to quantitatively and qualitatively show how neural network metamodels can be accurate and fast and demonstrate their potential for optimization of complex spatiotemporal problems in biology. We expect these approaches will be broadly applied to speed up scientific research and discovery in biology and other systems that can be described by complex PDE systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8104327 | PMC |
http://dx.doi.org/10.1007/s40139-020-00216-8 | DOI Listing |
Comput Biol Med
January 2025
Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:
- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.
View Article and Find Full Text PDFComput Biol Med
January 2025
School of Computer Science, Chungbuk National University, Cheongju 28644, Republic of Korea. Electronic address:
The fusion index is a critical metric for quantitatively assessing the transformation of in vitro muscle cells into myotubes in the biological and medical fields. Traditional methods for calculating this index manually involve the labor-intensive counting of numerous muscle cell nuclei in images, which necessitates determining whether each nucleus is located inside or outside the myotubes, leading to significant inter-observer variation. To address these challenges, this study proposes a three-stage process that integrates the strengths of pattern recognition and deep-learning to automatically calculate the fusion index.
View Article and Find Full Text PDFNPJ Digit Med
January 2025
Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
Deep-learning models have shown promise in differentiating between benign and malignant lesions. Previous studies have primarily focused on specific anatomical regions, overlooking tumors occurring throughout the body with highly heterogeneous whole-body backgrounds. Using neurofibromatosis type 1 (NF1) as an example, this study developed highly accurate MRI-based deep-learning models for the early automated screening of malignant peripheral nerve sheath tumors (MPNSTs) against complex whole-body background.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey.
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Neurology, Peking University First Hospital, Beijing, People's Republic of China.
Persistent Postural-Perceptual Dizziness (PPPD) is a common cause of chronic vestibular syndrome. Although previous studies have identified central abnormalities in PPPD, the specific neural circuits and the alterations in brain network topological properties, and their association with dizziness and postural instability in PPPD remain unclear. This study includes 30 PPPD patients and 30 healthy controls.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!