During the last decade, many studies have demonstrated the role of CMV specific T-cell immune response on controlling CMV replication and dissemination. In fact, it is well established that transplanted patients lacking CMV-specific T-cell immunity have an increased occurrence of CMV replication episodes and CMV-related complications. In this context, the use of adoptive transfer of CMV-specific T-cells has been widely investigated and applied to Hematopoietic Stem Cell Transplant patients and may be useful as a therapeutic alternative, to reconstitute the CMV specific T-cell response and to control CMV viremia in patients receiving a transplantation. However, only few authors have explored the use of T-cell adoptive transfer in SOT recipients. We propose a novel review in which we provide an overview of the impact of using CMV-specific T-cell adoptive transfer on the control of CMV infection in SOT recipients, the different approaches to stimulate, isolate and expand CMV-specific T-cells developed over the years and a discussion of the possible use of CMV adoptive cellular therapy in this SOT population. Given the timeliness and importance of this topic, we believe that such an analysis will provide important insights into CMV infection and its treatment/prevention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8104120PMC
http://dx.doi.org/10.3389/fimmu.2021.657144DOI Listing

Publication Analysis

Top Keywords

adoptive transfer
16
cmv-specific t-cell
12
t-cell adoptive
12
infection sot
8
cmv
8
cmv specific
8
specific t-cell
8
cmv replication
8
cmv-specific t-cells
8
control cmv
8

Similar Publications

functional validation of anti-CD19 chimeric antigen receptor T cells expressing lysine-specific demethylase 1 short hairpin RNA for the treatment of diffuse large B cell lymphoma.

Front Immunol

January 2025

Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.

Background: Chimeric antigen receptor T (CAR-T) cell therapy is more effective in relapsed or refractory diffuse large B cell lymphoma (DLBCL) than other therapies, but a high proportion of patients relapse after CAR-T cell therapy owing to antigen escape, limited persistence of CAR-T cells, and immunosuppression in the tumor microenvironment. CAR-T cell exhaustion is a major cause of relapse. Epigenetic modifications can regulate T cell activation, maturation and depletion; they can be applied to reduce T cell depletion, improve infiltration, and promote memory phenotype formation to reduce relapse after CAR-T cell therapy.

View Article and Find Full Text PDF

Objective: Currently, chimeric antigen receptor T-cell (CART) therapy represents a highly effective approach for relapsed/refractory B-cell lymphomas. However, it also carries treatment-related risks. Limited data are available on the risks associated with CART therapy in patients with gastrointestinal involvement in B-cell lymphomas.

View Article and Find Full Text PDF

Adoptive T-cell transfer has revolutionized the treatment of hematological malignancies. However, this approach has had very limited success in treating solid tumors, largely due to inadequate infiltration of vascularly administered T cells at tumor sites. The shear-resistant interaction between endothelial E-selectin and its cognate ligand expressed on leukocytes, sialyl Lewis X (sLe), is an essential prerequisite for extravasation of circulating leukocytes.

View Article and Find Full Text PDF

Background: Asthma is a prevalent respiratory disease, and its management remains largely unsatisfactory. Mesenchymal stem cells (MSCs) have been demonstrated to be efficacious in reducing airway inflammation in experimental allergic diseases, representing a potential alternative treatment for asthma. Migrasomes are recently identified extracellular vesicles (EVs) generated in migrating cells and facilitate intercellular communication.

View Article and Find Full Text PDF

Introduction: Convalescent plasma (CP) therapy is a form of passive immunization which has been used as a treatment for coronavirus disease 2019 (COVID-19). This study aims to evaluate the efficacy and safety of CP therapy in patients with severe COVID-19.

Methodology: In this retrospective cohort study, 50 patients with severe COVID-19 treated with CP at Shahid Beheshti Hospital, Kashan, in 2019 were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!