Oxidative Stress in SLE T Cells, Is NRF2 Really the Target to Treat?

Front Immunol

Department of Pediatrics, Pediatric Rheumatology, Medical Faculty, RWTH Aachen University, Aachen, Germany.

Published: September 2021

Oxidative stress is a major component of cellular damage in T cells from patients with systemic lupus erythematosus (SLE) resulting amongst others in the generation of pathogenic Th17 cells. The NRF2/Keap1 pathway is the most important antioxidant system protecting cells from damage due to oxidative stress. Activation of NRF2 therefore seems to represent a putative therapeutic target in SLE, which is nevertheless challenged by several findings suggesting tissue and cell specific differences in the effect of NRF2 expression. This review focusses on the current understanding of oxidative stress in SLE T cells and its pathophysiologic and therapeutic implications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102865PMC
http://dx.doi.org/10.3389/fimmu.2021.633845DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
stress sle
8
sle cells
8
cells
5
oxidative
4
sle
4
cells nrf2
4
nrf2 target
4
target treat?
4
treat? oxidative
4

Similar Publications

Background: We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys.

Methods: Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ.

Results: TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels.

View Article and Find Full Text PDF

Backgrounds: Memory and emotion are especially vulnerable to psychiatric disorders such as post-traumatic stress disorder (PTSD), which is linked to disruptions in serotonin (5-HT) metabolism. Over 90% of the 5-HT precursor tryptophan (Trp) is metabolized via the Trp-kynurenine (KYN) metabolic pathway, which generates a variety of bioactive molecules. Dysregulation of KYN metabolism, particularly low levels of kynurenic acid (KYNA), appears to be linked to neuropsychiatric disorders.

View Article and Find Full Text PDF

Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis.

Front Biosci (Landmark Ed)

January 2025

The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS.

View Article and Find Full Text PDF

Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.

View Article and Find Full Text PDF

Winery By-Products and Effects on Atherothrombotic Markers: Focus on Platelet-Activating Factor.

Front Biosci (Landmark Ed)

January 2025

Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, 17676 Athens, Greece.

Platelet aggregation and inflammation play a crucial role in atherothrombosis. Wine contains micro-constituents of proper quality and quantity that exert cardioprotective actions, partly through inhibiting platelet-activating factor (PAF), a potent inflammatory and thrombotic lipid mediator. However, wine cannot be consumed extensively due to the presence of ethanol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!