Unlabelled: Grime's competition-stress-ruderal (CSR) theory is widely used to study plant species' responses to multiple environmental factors. We compared two models to allocate CSR types the global "StrateFy" model (Pierce et al. Funct Ecol, 31:444-457, 2017) and a locally developed morpho-physiological model (Novakovskiy et al. Int J Ecol, p e1323614, 2016). The "StrateFy" model is based on three morphological leaf traits: leaf area (LA), leaf dry matter content (LDMC) and specific leaf area (SLA). The morpho-physiological model additionally uses plant height (PH), leaf dry weight (LDW), photosynthetic capacity (PN) and respiration rate (RD), leaf nitrogen, and carbon concentration (LNC, LCC). We applied both models to 74 plant species, the traits of which were measured at mountain (Northern Urals) and plane (Komi Republic, Russia) landscapes of European Northeast. The comparison of the calculated C, S, and R scores showed two groups of species with large and unidirectional differences. The first group consists of species with a shift from S (morpho-physiological model) to CR (StrateFy model) strategy. Species of this group are typical for deep shaded habitats and characterized by low LDMC (10-25%) and high SLA (30-60 mm mg). The second group consists of C species (morpho-physiological model) which were classified as S (StrateFy model) strategy. This group includes mainly tall shrubs, graminoids, and forbs with relatively small leaves (300-2000 mm). In our opinion, the CSR strategies obtained by the morpho-physiological model showed better agreement with the basic principles underlying Grime's theory. The use of a limited number of morphological traits (LA, LDMC, SLA) in the StrateFy model does not always allow to determine the life strategy correctly. For example, these traits are insufficient for a clear separation of deeply shaded stress-tolerant species and ruderals. On the other hand, the use of the morpho-physiological model requires a large number of field measurements, which makes it difficult to use this model to allocate CSR strategies for a large number of species.
Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-021-00973-9.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055743 | PMC |
http://dx.doi.org/10.1007/s12298-021-00973-9 | DOI Listing |
Plant Physiol Biochem
December 2024
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Wheat Biology and Genetic Improvement on Northwestern China, Ministry of Agriculture and Rural Affairs, Xianyang, 712100, China. Electronic address:
Photosynthesis drives crop growth and production, and strongly affects grain yields; therefore, it is an ideal trait for wheat drought resistance breeding. However, studies of the negative effects of drought stress on wheat photosynthesis rates have lacked accurate evaluation methods, as well as high-throughput techniques. We investigated photosynthetic capacity under drought stress in wheat varieties with varying degrees of drought stress resistance using hyperspectral and chlorophyll fluorescence (ChlF) imaging data.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Department of Life sciences, Western Caspian University, Baku, Azerbaijan.
Pot marigold (Calendula officinalis L.) is an herbaceous ornamental and medicinal plant. Climate models predict a reduction of precipitations and increasing the average temperature.
View Article and Find Full Text PDFGenomics
November 2024
Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Biology, Division of Biochemistry, 91058 Erlangen, Germany. Electronic address:
The climate crisis impairs yield and quality of crucial crops like potatoes. We investigated the effects of heat stress on five morpho-physiological parameters in a diverse panel of 178 potato cultivars under glasshouse conditions. Overall, heat stress increased shoot elongation and green fresh weight, but reduced tuber yield, starch content and harvest index.
View Article and Find Full Text PDFPlants (Basel)
September 2024
Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, KSA, P.O. Box 2460, Riyadh 11451, Saudi Arabia.
Wheat breeding programs are currently focusing on using non-destructive and cost-effective hyperspectral sensing tools to expeditiously and accurately phenotype large collections of genotypes. This approach is expected to accelerate the development of the abiotic stress tolerance of genotypes in breeding programs. This study aimed to assess salt tolerance in wheat genotypes using non-destructive canopy spectral reflectance measurements as an alternative to direct laborious and time-consuming phenological selection criteria.
View Article and Find Full Text PDFPhysiol Plant
August 2024
The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.
In light of the changing climate that jeopardizes future food security, genomic selection is emerging as a valuable tool for breeders to enhance genetic gains and introduce high-yielding varieties. However, predicting grain yield is challenging due to the genetic and physiological complexities involved and the effect of genetic-by-environment interactions on prediction accuracy. We utilized a chained model approach to address these challenges, breaking down the complex prediction task into simpler steps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!