Even though SARS-CoV-2's primary transmission pathway is person-to-person, the role played by surfaces and food contact materials in carrying viral RNA should be further explored. For this purpose, the study aimed to investigate the persistence of SARS-CoV-2 using the strain ATCC® VR-1986HK™ on flow pack polyethylene (FPP) and polystyrene food trays (PFT). Samples of FPP and PFT were contaminated with heat-inactivated SARS-CoV-2 and were incubated at a temperature of 24 ± 1 °C and at controlled relative humidity (RH 65%). The experimental design included analyses at the time 0, 3, 6, 12, 24, 36, 48 and after every 24 h until the viral RNA was no longer detectable. The results showed a significant decrease ( < 0.001) in viral copy numbers on PFT within 3 h (24% reduction) and, at 72 h, the viral RNA had fallen below the limit of detection. Regarding the FPP, it was necessary to wait 24 h for a significant decrease ( = 0.015) in the viral load (14% reduction), while the detection threshold was reached at 96 h. These findings showed that the viral RNA persists longer on flow pack polyethylene samples than on polystyrene food trays, thus highlighting the importance of material characteristics in the persistence of SARS-CoV-2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8095065PMC
http://dx.doi.org/10.1016/j.lwt.2021.111606DOI Listing

Publication Analysis

Top Keywords

persistence sars-cov-2
8
atcc® vr-1986hk™
8
food contact
8
contact materials
8
flow pack
8
pack polyethylene
8
polystyrene food
8
food trays
8
viral rna
8
evaluation persistence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!