Surfaces engineered to identify and enrich glycoproteins are of considerable interest in the diagnostic and detection fields. A boronate affinity (BA) material was proposed as a potential candidate for the isolation of glycoproteins. However, this material has the disadvantages of low efficiency and non-degradability. Herein, a novel dendrimer-amplified BA cellulose foam (PEI-PBA-CF) was fabricated via a mild two-step approach. The as-prepared PEI-PBA-CF exhibited a rapid adsorption equilibrium rate (within 60 min) and outstanding adsorption capacity for horseradish peroxidase (537.4 mg g) and ovalbumin (495.5 mg g). Furthermore, competitive adsorption experiments demonstrated that PEI-PBA-CF could achieve selective separation and purification of glycoproteins from complex biological samples due to the synergistic effect of the improved BA capacity by the dendrimer and the well-interconnected porous structure of the biomass matrix. Consequently, these cellulose foams might present new application opportunities in analytical and biomedical fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2021.118082 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!