Synthesis and effects of the selective oxidation of chitosan in induced disease resistance against Botrytis cinerea.

Carbohydr Polym

Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China. Electronic address:

Published: August 2021

Plant fungal diseases can lead to yield reduction and quality degradation in crops, which usually cause serious economic losses. Additionally, chemical fungicides used in the prevention and control of plant diseases are increasingly restricted due to resistance development and high toxicity. Therefore, biogenic fungicides such as chitosan with low toxicity and good biocompatibility are receiving increasing attention. This study found that the acid swelling chitosan pretreatment method can accelerate the rate of the specific oxidation of chitosan catalyzed by the TEMPO-NaBr-NaOCl system. This study proved that OCTS induces plant disease resistance, and the control efficiencies achieved in protection and treatment experiments against Botrytis cinerea were 80.6 % and 83.4 %, respectively, at 400 μg/mL OCTS. In addition, OCTS can promote plant growth and enhance plant defense enzyme activities. This research has realized a forward-looking exploration of the application of OCTS in the agricultural field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2021.118073DOI Listing

Publication Analysis

Top Keywords

oxidation chitosan
8
disease resistance
8
botrytis cinerea
8
plant
5
synthesis effects
4
effects selective
4
selective oxidation
4
chitosan
4
chitosan induced
4
induced disease
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!