The diagnosis, prognosis, and treatment of mild traumatic brain injuries (mTBIs), such as concussions, are significant unmet medical issues. The kinetic forces that occur in mTBI adversely affect the cerebral vasculature, making cerebrovascular injury (CVI) a pathophysiological hallmark of mTBI. Given the importance of a healthy cerebrovascular system in overall brain function, CVI is likely to contribute to neurological dysfunction after mTBI. As such, CVI and related pathomechanisms may provide objective biomarkers and therapeutic targets to improve the clinical management and outcomes of mTBI. Despite this potential, until recently, few studies have focused on the cerebral vasculature in this context. This article will begin by providing a brief overview of the cerebrovascular system followed by a review of the literature regarding how mTBI can affect the integrity and function of the cerebrovascular system, and how this may ultimately contribute to neurological dysfunction and neurodegenerative conditions. We then discuss promising avenues of research related to mTBI biomarkers and interventions that target CVI, and conclude that a clinical approach that takes CVI into account could result in substantial improvements in the care and outcomes of patients with mTBI.

Download full-text PDF

Source
http://dx.doi.org/10.1177/10738584211012264DOI Listing

Publication Analysis

Top Keywords

cerebrovascular system
16
treatment mild
8
mild traumatic
8
traumatic brain
8
cerebral vasculature
8
contribute neurological
8
neurological dysfunction
8
mtbi
7
cvi
5
targeting cerebrovascular
4

Similar Publications

Background And Objectives: Although previous trials have established the efficacy and safety of endovascular thrombectomy (EVT) in large ischemic core strokes, most of them excluded patients with extracranial internal carotid artery (e-ICA) occlusion. We aimed to compare outcomes in patients with e-ICA occlusion and large ischemic core infarcts treated with EVT vs medical management (MM).

Methods: This was a secondary analysis of the SELECT2 trial, a randomized controlled trial conducted at 31 international sites.

View Article and Find Full Text PDF

In modern war theaters, exposures to blast overpressures are one of the most common causes of brain injury. These pervasive events result in acute and chronic cerebrovascular degenerative processes. Using a rat model of blast-induced mild traumatic brain injury, we identified intramural periarterial hematomas as early primary acute lesions induced by blast exposures.

View Article and Find Full Text PDF

Significance: Cerebral blood flow (CBF) and cerebral blood volume (CBV) are key metrics for regional cerebrovascular monitoring. Simultaneous, non-invasive measurement of CBF and CBV at different brain locations would advance cerebrovascular monitoring and pave the way for brain injury detection as current brain injury diagnostic methods are often constrained by high costs, limited sensitivity, and reliance on subjective symptom reporting.

Aim: We aim to develop a multi-channel non-invasive optical system for measuring CBF and CBV at different regions of the brain simultaneously with a cost-effective, reliable, and scalable system capable of detecting potential differences in CBF and CBV across different regions of the brain.

View Article and Find Full Text PDF

Background: A population-based study delineating the epidemiologic, clinical, and treatment characteristics of femoral neck fractures (FNFs) in elderly patients has not yet been conducted in Turkey. In this nationwide study, the epidemiologic, clinical, and treatment characteristics of patients aged ⩾65 years with FNFs who underwent osteosynthesis, hemiarthroplasty (HA), or total hip arthroplasty (THA) were examined.

Methods: Patients aged ⩾65 years with FNFs were identified in this retrospective, nationwide study.

View Article and Find Full Text PDF

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!