AI Article Synopsis

Article Abstract

Metabolic complications in diabetic patients are driven by a combination of increased levels of nutrients and the presence of a proinflammatory environment. Methylglyoxal (MG) is a toxic byproduct of catabolism and has been strongly associated with the development of such complications. Macrophages are key mediators of inflammatory processes and their contribution to the development of metabolic complications has been demonstrated. However, a direct link between reactive metabolites and macrophage activation has not been demonstrated yet. Here, we show that acute MG treatment activated components of the p38 MAPK pathway and enhanced glycolysis in primary murine macrophages. MG induced a distinct gene expression profile sharing similarities with classically activated proinflammatory macrophages as well as metabolically activated macrophages usually found in obese patients. Transcriptomic analysis revealed a set of 15 surface markers specifically upregulated in MG-treated macrophages, thereby establishing a new set of targets for diagnostic or therapeutic purposes under high MG conditions, including diabetes. Overall, our study defines a new polarization state of macrophages that may specifically link aberrant macrophage activation to reactive metabolites in diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0041-1726346DOI Listing

Publication Analysis

Top Keywords

macrophage activation
12
metabolic complications
8
reactive metabolites
8
macrophages
6
methylglyoxal drives
4
drives distinct
4
distinct nonclassical
4
nonclassical macrophage
4
activation status
4
status metabolic
4

Similar Publications

Atherosclerosis risk is elevated in diabetic patients, but the underlying mechanism such as the involvement of macrophages remains unclear. Here, we investigated the underlying mechanism related to the pro-inflammatory activation of macrophages in the development of diabetic atherosclerosis. Bioinformatics tools were used to analyze the macrophage-related transcriptome differences in patients with atherosclerosis and diabetic mice.

View Article and Find Full Text PDF

Genetic variation in IL-4 activated tissue resident macrophages determines strain-specific synergistic responses to LPS epigenetically.

Nat Commun

January 2025

Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.

How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.

View Article and Find Full Text PDF

Erianin alleviates autoimmune myocarditis by suppressing the M1 polarization of macrophages via the NF-κB/NLRP3 signaling pathway.

Eur J Pharmacol

January 2025

Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:

Background: Myocarditis tends to lead to a poor prognosis, but there are no satisfactory preventive or therapeutic strategies. Erianin, a natural benzene compound, has been found to have antioxidant and anti-inflammatory effects. However, the effects of erianin on myocarditis remain unclear.

View Article and Find Full Text PDF

Natural phytochemicals reverting M2 to M1 macrophages: A novel alternative Leishmaniasis therapy.

Microb Pathog

January 2025

Immunology lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India. Electronic address:

Introduction: Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a leading cause of cancer death that has limited treatment options for advanced stages. Although PD-1 inhibitors such as nivolumab and pembrolizumab have been approved for advanced HCC treatment, their effectiveness is often hampered by the immunosuppressive tumor microenvironment (TME), which is due to hypoxia-driven CXCL12/CXCR4 axis activation. In this study, we developed 807-NPs, lipid-coated tannic acid (TA) nanoparticles that encapsulate BPRCX807, a potent CXCR4 antagonist to target HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!