Background: Patients with major adverse cardiovascular events (MACE) such as myocardial infarction or stroke suffer from frequent hospitalizations and have high mortality rates. By identifying patients at risk at an early stage, MACE can be prevented with the right interventions.

Objectives: The aim of this study was to develop machine learning-based models for the 5-year risk prediction of MACE.

Methods: The data used for modelling included electronic medical records of more than 128,000 patients including 29,262 patients with MACE. A feature selection based on filter and embedded methods resulted in 826 features for modelling. Different machine learning methods were used for modelling on the training data.

Results: A random forest model achieved the best calibration and discriminative performance on a separate test data set with an AUROC of 0.88.

Conclusion: The developed risk prediction models achieved an excellent performance in the test data. Future research is needed to determine the performance of these models and their clinical benefit in prospective settings.

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI210100DOI Listing

Publication Analysis

Top Keywords

risk prediction
12
machine learning
8
major adverse
8
adverse cardiovascular
8
cardiovascular events
8
test data
8
learning based
4
risk
4
based risk
4
prediction major
4

Similar Publications

Bidirectional recurrent neural network approach for predicting cervical cancer recurrence and survival.

Sci Rep

December 2024

School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, 47500, Selangor Darul Ehsan, Malaysia.

Cervical cancer is a deadly disease in women globally. There is a greater chance of getting rid of cervical cancer in case of earliest diagnosis. But for some patients, there is a chance of recurrence.

View Article and Find Full Text PDF

Cuproptosis, a newly identified form of cell death, has drawn increasing attention for its association with various cancers, though its specific role in colorectal cancer (CRC) remains unclear. In this study, transcriptomic and clinical data from CRC patients available in the TCGA database were analyzed to investigate the impact of cuproptosis. Differentially expressed genes linked to cuproptosis were identified using Weighted Gene Co-Expression Network Analysis (WGCNA).

View Article and Find Full Text PDF

This study presents a web application for predicting cardiovascular disease (CVD) and hypertension (HTN) among mine workers using machine learning (ML) techniques. The dataset, collected from 699 participants at the Gol-Gohar mine in Iran between 2016 and 2020, includes demographic, occupational, lifestyle, and medical information. After preprocessing and feature engineering, the Random Forest algorithm was identified as the best-performing model, achieving 99% accuracy for HTN prediction and 97% for CVD, outperforming other algorithms such as Logistic Regression and Support Vector Machines.

View Article and Find Full Text PDF

Prognostic role of aetiological agent vs. clinical pattern in candidates to lead extraction for cardiac implantable electronic device infections.

Sci Rep

December 2024

Department of Medical and Surgical Sciences, Institute of Cardiology, University of Bologna, Policlinico S.Orsola-Malpighi, via Massarenti 9, Bologna, 40138, Italy.

Cardiac implantable electronic devices infections (CIEDI) are associated with poor survival despite the improvement in transvenous lead extraction (TLE). Aetiology and systemic involvement are driving factors of clinical outcomes. The aim of this study was to explore their contribute on overall mortality.

View Article and Find Full Text PDF

There is a pressing need to improve risk stratification and treatment selection for HPV-negative head and neck squamous cell carcinoma (HNSCC) due to the adverse side effects of treatment. One of the most important prognostic features is lymph nodes involvement. Previously, we demonstrated that tumor formation in patient-derived xenografts (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!