Natural inorganic/organic nanohybrids are a fascinating model in biomaterials design due to their ultra-microstructure and extraordinary properties. Here, we report unique-structured nanohybrids through self-assembly of biomedical inorganic/organic nanounits, composed of bioactive inorganic nanoparticle core (hydroxyapatite, bioactive glass, or mesoporous silica) and chitosan shell - namely Chit@IOC. The inorganic core thin-shelled with chitosan could constitute as high as 90%, strikingly contrasted with the conventional composites. The Chit@IOC nanohybrids were highly resilient under cyclic load and resisted external stress almost an order of magnitude effectively than the conventional composites. The nanohybrids, with the nano-roughened surface topography, could accelerate the cellular responses through stimulated integrin-mediated focal adhesions. The nanohybrids were also able to load multiple therapeutic molecules in the core and shell compartment and then release sequentially, demonstrating controlled delivery systems. The nanohybrids compartmentally-loaded with therapeutic molecules (dexamethasone, fibroblast growth factor 2, and phenamil) were shown to stimulate the anti-inflammatory, pro-angiogenic and osteogenic events of relevant cells. When implanted in the in vivo calvarium defect model with 3D-printed scaffold forms, the therapeutic nanohybrids were proven to accelerate new bone formation. Overall, the nanohybrids self-assembled from Chit@IOC nanounits, with their unique properties (ultrahigh inorganic content, nano-topography, high resilience, multiple-therapeutics delivery, and cellular activation), can be considered as promising 3D tissue regenerative platforms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2021.120857 | DOI Listing |
Eur Arch Paediatr Dent
January 2025
Pediatric Dentistry and Dental Public Health Department.Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
Purpose: Optical properties of recent aesthetic restorative materials must maintain an acceptable appearance throughout their functional lifetime. This study aimed to assess the changes in translucency and colour of recent resin-based restorative materials after exposure to beverages commonly consumed by children.
Methods: An experimental in-vitro study on 48 discs specimens prepared from; Group I: Filtek Z250 XT (Nanohybrid), Group II: Cention N (Alkasite bulkfill), and Group III: SDR flow Plus (Flowable bulkfill).
ACS Appl Bio Mater
January 2025
Centre for Interdisciplinary Research and Innovation (CIDRI), UPES (Bidholi), Dehradun, Uttarakhand 248007, India.
The Coronavirus Disease 2019 (COVID-19) recently emerged as a life-threatening global pandemic that has ravaged millions of lives. The affected patients are known to frequently register numerous comorbidities induced by COVID-19 such as diabetes, asthma, cardiac arrest, hypertension, and neurodegenerative diseases, to name a few. The expensiveness and probability of false negative results of conventional screening tests often delay timely diagnosis and treatment.
View Article and Find Full Text PDFTalanta
December 2024
Faculty of Chemistry, University of Mazandaran, Babolsar, Iran. Electronic address:
Preparation of carbon dots (CDs) from biomass waste is of great interest due to its low cost synthesis, environmental compatibility and functionalization without adding dangerous chemicals. Herein, S-doped carbon dot (SCD) was synthesized using agricultural waste as carbon precursors and modified in-situ with rhodamine B dye (SCD@RHB) to construct efficient flouresent probe. SCD@RHB was loaded into HKUST-1 metal-organic framework (SCD@RHB/HKUST-1) and the probe was employed as ratiometric flouresent (RF) sensor for the determination of ciprofloxacin (CIP) antibiotic in trace level.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China. Electronic address:
Bacterial infections have become a fatal issue for human health. The excessive use of antibiotics leads to bacterial resistance. It is of great importance to develop alternate antimicrobial nanomaterials for effective antibacterial therapy.
View Article and Find Full Text PDFNanoscale
January 2025
McMaster University, Department of Engineering Physics, Hamilton, ON M8S 4K1, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!