A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation in the performance of the biodegradation of herbicide diuron to high concentrations by Lysinibacillus fusiformis acclimatized by sequential batch culture. | LitMetric

Evaluation in the performance of the biodegradation of herbicide diuron to high concentrations by Lysinibacillus fusiformis acclimatized by sequential batch culture.

J Environ Manage

Posgrado en Biotecnología, Universidad Politécnica de Pachuca, Ex-Hacienda de Santa Bárbara, Municipio. Zempoala, Hgo., C.P, 43830, Carretera Pachuca Cd. Sahagún Km. 20, Mexico. Electronic address:

Published: August 2021

We evaluated and characterized the biodegradation of the herbicide diuron in its commercial form above its saturation concentration by Lysinibacillus fusiformis acclimatized by sequential batch culturing. Acclimatization was carried out in eight cycles in liquid culture, improving the capacity of L. fusiformis to remove diuron from 55.13 ± 1.3% in the first batch to 87.2 ± 0.11% in the eighth batch. Diuron biosorption was characterized with Langmuir and Freundlich isotherms, obtaining a maximum biosorption (q) of 0.00885 mg mg. In diuron biodegradation assays, a consumption substrate biomass yield (Y) of 6.266 mg mg was obtained, showing that biodegradation was the main mechanism in diuron removal. Diuron biodegradation by L. fusiformis was characterized by the Monod model, with a maximum specific growth rate (μ) of 0.0245 h and an affinity constant (K) of 344.09 mg L. A low accumulation of 3,4-dichloroaniline with the production of chloride ions indicated dechlorination when diuron was present at high concentrations. A phytotoxic assay conducted with Lactuca sativa showed that the toxicity of an effluent with diuron at 250 mg L decreased when it was pretreated with acclimatized L. fusiformis. Acclimatization by sequential batch culturing improved the ability of L. fusiformis to biodegrade diuron at high concentrations, showing potential in the bioremediation of diuron-contaminated sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.112688DOI Listing

Publication Analysis

Top Keywords

diuron high
12
high concentrations
12
sequential batch
12
diuron
10
biodegradation herbicide
8
herbicide diuron
8
lysinibacillus fusiformis
8
fusiformis acclimatized
8
acclimatized sequential
8
batch culturing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!