Objectives: The genus Burkholderia comprises rod-shaped, non-spore-forming, obligately aerobic Gram-negative bacteria that is found across diverse ecological niches. Burkholderia contaminans, an emerging pathogen associated with cystic fibrosis, is frequently isolated from contaminated medical devices in hospital settings. The aim of this study was to understand the genomic characteristics, antimicrobial resistance profile and virulence determinants of B. contaminans strain SBC01 isolated from the eye of a patient hit by a cow's tail.

Methods: A hybrid sequence of isolate SBC01 was generated using Illumina HiSeq and Oxford Nanopore Technology platforms. Unicycler was used to assemble the hybrid genomic sequence. The draft genome was annotated using the NCBI Prokaryotic Genome Annotation Pipeline. Antimicrobial susceptibility testing was performed by VITEK®2. Antimicrobial resistance and virulence genes were identified using validated bioinformatics tools.

Results: The assembled genome size is 8 841 722 bp with a G+C content of 66.33% distributed in 19 contigs. Strain SBC01 was found to possess several antimicrobial resistance and efflux pump genes. The isolate was susceptible to tetracyclines, meropenem and ceftazidime. Many genes encoding potential virulence factors were identified.

Conclusion: Burkholderia contaminans SBC01 belonging to sequence type 482 (ST482) is a multidrug-resistant strain containing diverse antimicrobial resistance genes, revealing the risks associated with infections by new Burkholderia spp. The large G+C-rich genome has a myriad of virulence factors, highlighting its pathogenic potential. Thus, while providing insights into the antimicrobial resistance and virulence potential of this uncommon species, the present analysis will aid in understanding the evolution and speciation in the Burkholderia genus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jgar.2021.04.004DOI Listing

Publication Analysis

Top Keywords

antimicrobial resistance
20
burkholderia contaminans
12
contaminans strain
8
strain sbc01
8
resistance virulence
8
virulence factors
8
burkholderia
6
antimicrobial
6
resistance
5
virulence
5

Similar Publications

Background: HIV and tuberculosis (TB) co-infection poses a significant health challenge, particularly when involving the central nervous system (CNS), where it leads to severe morbidity and mortality. Current treatments face challenges such as drug resistance, immune reconstitution inflammatory syndrome (IRIS), and persistent inflammation. Glutathione (GSH) has the therapeutic potential to enhance treatment outcomes by improving antibiotic efficacy, reducing inflammation, and mitigating immune dysfunction.

View Article and Find Full Text PDF

Second-generation integrase strand transfer inhibitors (INSTIs) are strongly recommended for people living with HIV-1 (PLWH). The emergence of resistance to second-generation INSTIs has been infrequent and has not yet been a major issue in high-income countries. However, the delayed rollouts of these INSTIs in low- to middle-income countries during the COVID-19 pandemic combined with increased transmission of drug-resistant mutants worldwide are leading to an increase in INSTI resistance.

View Article and Find Full Text PDF

The ongoing monkeypox (mpox) disease outbreak has spread to multiple countries in Central Africa and evidence indicates it is driven by a more virulent clade I monkeypox virus (MPXV) strain than the clade II strain associated with the 2022 global mpox outbreak, which led the WHO to declare this mpox outbreak a public health emergency of international concern. The FDA-approved small molecule antiviral tecovirimat (TPOXX) is recommended to treat mpox cases with severe symptoms, but the limited efficacy of TPOXX and the emergence of TPOXX resistant MPXV variants has challenged this medical practice of care and highlighted the urgent need for alternative therapeutic strategies. In this study we have used vaccinia virus (VACV) as a surrogate of MPXV to assess the antiviral efficacy of combination therapy of TPOXX together with mycophenolate mofetil (MMF), an FDA-approved immunosuppressive agent that we have shown to inhibit VACV and MPXV, or the N-myristoyltransferase (NMT) inhibitor IMP-1088.

View Article and Find Full Text PDF

is an important opportunistic pathogen often resistant to antibiotics. Specific phages can be useful in eliminating infection caused by . phage vB_KlebPS_265 (KlebP_265) and its host strain were isolated from the sputum of a patient with infection.

View Article and Find Full Text PDF

Enterovirus-D68 (EV68) continues to present as a global health issue causing respiratory illness and outbreaks associated with long-lasting neurological disease, with no antivirals or specific treatment options. The development of antiviral therapeutics, such as small-molecule inhibitors that target conserved proteins like the enteroviral 3C protease, remains to be achieved. While various 3C inhibitors have been investigated, their design does not consider the potential emergence of drug resistance mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!