We previously identified a novel acidic polysaccharide, silkrose-AY, from the Japanese oak silkmoth (Antheraea yamamai), which can activate an innate immune response in mouse macrophage cells. However, innate immune responses stimulated by silkrose-AY in teleosts remain unclear. Here, we show the influence of dietary silkrose-AY in medaka (Oryzias latipes), a teleost model, in response to Edwardsiella tarda infection. Dietary silkrose-AY significantly improved the survival of fish and decreased the number of bacteria in their kidneys after the fish were artificially infected with E. tarda by immersion. We also performed a microarray analysis of the intestine, which serves as a primary barrier against microbial infection, to understand the profiles of differentially expressed genes (DEGs) evoked by silkrose-AY. The dietary silkrose-AY group showed differential expression of 2930 genes when compared with the control group prior to E. tarda infection. Gene ontology and pathway analysis of the DEGs highlighted several putative genes involved in pathogen attachment/recognition, the complement and coagulation cascade, antimicrobial peptides/enzymes, opsonization/phagocytosis, and epithelial junctional modification. Our findings thus provide fundamental information to help understand the molecular mechanism of bacterial protection offered by insect-derived immunostimulatory polysaccharides in teleosts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2021.05.001DOI Listing

Publication Analysis

Top Keywords

dietary silkrose-ay
12
antheraea yamamai
8
edwardsiella tarda
8
medaka oryzias
8
oryzias latipes
8
innate immune
8
tarda infection
8
silkrose-ay
6
effects dietary
4
dietary silkrose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!