Integration of mechanics and biology in computer simulation of bone remodeling.

Prog Biophys Mol Biol

Multi-disciplinary Mechanics and Modeling Laboratory, Department of Engineering, East Carolina University, Greenville, NC 27858, USA. Electronic address:

Published: September 2021

Bone remodeling is a complex physiological process that spans across multiple spatial and temporal scales and is regulated by both mechanical and hormonal cues. An imbalance between bone resorption and bone formation in the process of bone remodeling may lead to various bone pathologies. One powerful and non-invasive approach to gain new insights into mechano-adaptive bone remodeling is computer modeling and simulation. Recent findings in bone physiology and advances in computer modeling have provided a unique opportunity to study the integration of mechanics and biology in bone remodeling. Our objective in this review is to critically appraise recent advances and developments and discuss future research opportunities in computational bone remodeling approaches that enable integration of mechanics and cellular and molecular pathways. Based on the critical appraisal of the relevant recent published literature, we conclude that multiscale in silico integration of personalized bone mechanics and mechanobiology combined with data science and analytics techniques offer the potential to deepen our knowledge of bone remodeling and provide ample opportunities for future research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbiomolbio.2021.05.001DOI Listing

Publication Analysis

Top Keywords

bone remodeling
28
integration mechanics
12
bone
12
mechanics biology
8
computer modeling
8
remodeling
7
integration
4
biology computer
4
computer simulation
4
simulation bone
4

Similar Publications

N4-acetylcytidine (ac4C) modification is a crucial RNA modification widely present in eukaryotic RNA. Previous studies have demonstrated that ac4C plays a pivotal role in viral infections. Despite numerous studies highlighting the strong correlation between ac4C modification and cancer progression, its detailed roles and molecular mechanisms in normal physiological processes and cancer progression remain incompletely understood.

View Article and Find Full Text PDF

Bone homeostasis encompasses two interrelated aspects: bone remodeling and cartilage metabolism. Disruption of bone homeostasis can lead to the development of metabolic bone diseases such as osteoporosis and osteoarthritis. The maintenance of bone homeostasis is a complex process that does not solely rely on the functions of the bone tissue itself.

View Article and Find Full Text PDF

Musculoskeletal model predicted paraspinal loading may quick estimate the effect of exercise on spine BMD.

Front Bioeng Biotechnol

December 2024

Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.

Purpose: Spine is the most commonly found fracture site due to osteoporosis. Combined exercise including high-impact and resistance exercise shows the potential to improve bone mineral density (BMD) in the spine. However, the mechanical loading introduced by exercise, which is the mechanism of BMD changes, has not been investigated.

View Article and Find Full Text PDF

Unlabelled: Uremic leontiasis ossia (ULO) is a rare manifestation of renal osteodystrophy in) patients with end-stage chronic kidney disease (CKD) and secondary hyperparathyroidism (SHPTH). It occurs due to increased osteoclastic activity secondary to high plasmatic parathyroid hormone (PTH) levels. This leads to bone deformation with thickening and massive enlargement of the cranial vault, resulting in a leonine face appearance.

View Article and Find Full Text PDF

Heavy mechanical force decelerates orthodontic tooth movement via Piezo1-induced mitochondrial calcium down-regulation.

Genes Dis

March 2025

College of Stomatology, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.

Orthodontic tooth movement (OTM) depends on periodontal ligament cells (PDLCs), which sense biomechanical stimuli and initiate alveolar bone remodeling. Light (optimal) forces accelerate OTM, whereas heavy forces decelerate it. However, the mechanisms by which PDLCs sense biomechanical stimuli and affect osteoclastic activities under different mechanical forces (MFs) remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!