A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vitro and in vivo assessments of inspired Ag/80S bioactive nanocomposites against carbapenem-resistant Klebsiella pneumoniae. | LitMetric

In vitro and in vivo assessments of inspired Ag/80S bioactive nanocomposites against carbapenem-resistant Klebsiella pneumoniae.

Mater Sci Eng C Mater Biol Appl

Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan. Electronic address:

Published: June 2021

In 2017 the World Health Organization listed carbapenem-resistant K. pneumoniae as a critical priority for developing a novel antimicrobial agent. Here we report on our investigation of the antibacterial efficacy of silver nanoparticles (AgNPs), confined to a mesostructured material and designated as an Ag/80S bioactive nanocomposite, against carbapenem-resistant K. pneumoniae. Results from a textural analysis indicate a 7.5 nm mesopore size and 307.6 m/g surface area for Ag/80S. UV-Vis spectrum and transmission electron microscope images of Ag/80S revealed a uniform AgNP size distribution with an approximately 3.5 nm average. ICP-MS analysis demonstrated a significantly higher silver content in TSB (a protein-rich environment) compared to ultrapure water, suggesting a controllable release of Ag/80S and thus designated as the inspired Ag/80S. Minimum inhibitory concentration (MIC) values against 16 K. pneumoniae isolates ranged from 0.25 to 0.5% (2.5 to 5.0 mg/ml). NIH 3T3 fibroblast viability at 0.25% exceeded 80% and at 0.5% just under 70%, suggesting low cytotoxicity. Mechanistic study results indicate that the inspired Ag/80S attached to and deformed bacterial cells and induced a time-dependent accumulation of reactive oxygen species, leading to bacterial death. Further, inspired Ag/80S significantly extended median survival time in a Caenorhabditis elegans animal model infected with carbapenem-resistant K. pneumoniae ATCC BAA-1705. Combined, we found a novel Ag/80S which could prevent aggregation of AgNP and control its release via a specific environment for medical use against carbapenem-resistant K. pneumoniae.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2021.112093DOI Listing

Publication Analysis

Top Keywords

inspired ag/80s
16
carbapenem-resistant pneumoniae
16
ag/80s
9
ag/80s bioactive
8
pneumoniae
6
carbapenem-resistant
5
vitro vivo
4
vivo assessments
4
inspired
4
assessments inspired
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!