Cd immobilization and soil quality under Fe-modified biochar in weakly alkaline soil.

Chemosphere

Rural Energy & Environment Agency, MARA, Beijing, 100125, China. Electronic address:

Published: October 2021

Cost-effective and environment-friendly implementation techniques are critical to the success of remediation in large-scale cadmium (Cd) contaminated agricultural soil. Field experiments were conducted to investigate the effect of Fe-modified biochar on Cd bioavailability in soils and uptake by maize (Zea mays L.), soil aggregate distribution and stability, and microbial community composition in weakly alkaline Cd-contaminated soil. Results showed that Fe-modified biochar optimized the structure and stability of soil aggregates. Moreover, the content of soil organic carbon increased by 6.59%-20.36% when compared with the control groups. However, DTPA-Cd concentration under the treatment of Fe-modified biochar was suffered by 37.74%-41.65% reduction in contrast with CK, and the significant decrease (P < 0.05) was obtained at 0.5% Fe-modified biochar. Moreover, sequential extraction procedures showed that the acid soluble and reducible states of Cd was converted into oxidizable and residual form. The addition of Fe-modified biochar inhibited Cd accumulation in maize, being 41.31%-76.64% (Zhengdan 958), 38.19%-70.95% (Liyu 86) and 52.30%-59.95% (Sanbei 218) reduction, respectively, in contrast with CK. The activity of catalase, urease and alkaline phosphatase in soil increased gradually with the addition of Fe-modified biochar. The enhancement in the number of soil bacterial OTUs and the values of Shannon, Chao1, ACE index indicated that Fe-modified biochar promoted the richness and diversity of bacterial communities. Therefore, the improvements of soil environment and biological quality indicated that Fe-modified biochar should be an alternative agent on remediation of Cd-contaminated soils.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.130606DOI Listing

Publication Analysis

Top Keywords

fe-modified biochar
16
weakly alkaline
8
soil
6
immobilization soil
4
soil quality
4
fe-modified
4
quality fe-modified
4
biochar
4
biochar weakly
4
alkaline soil
4

Similar Publications

Differentiated effects and mechanisms of N-, P-, S-, and Fe-modified biochar materials for remediating Cd- and Pb-contaminated calcareous soil.

Ecotoxicol Environ Saf

January 2025

MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.

To investigate the remediation effects of various modified biochar materials derived from different impregnation agents on Cd- and Pb-contaminated calcareous soil, nitrogen (N-), phosphorus (P-), sulfur (S-), and iron (Fe-) modified biochar materials (NBC, PBC, SBC, FBC) were fabricated through the impregnation-pyrolysis method and employed to immobilize Pb and Cd in the calcareous soil. The characterization results showed that NBC exhibited an uneven pore size distribution and increased aromaticity, while PBC and SBC had increased pH and ash content. Pot experiments demonstrated significantly different effects of various modified biochar materials on soil immobilization and plant uptake of Cd and Pb.

View Article and Find Full Text PDF

Cd adsorption prediction of Fe mono/composite modified biochar based on machine learning: Application for controllable preparation.

Environ Res

January 2025

College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China; College of Chemical Engineering and Material Science, Tianjin University of Science & Technology, Tianjin, 300457, China. Electronic address:

In this study, artificial neural network (ANN) and random forest (RF) were constructed to predict the Cd adsorption capacity of Fe-modified biochar. The RF model outperformed ANN model in accuracy and predictive performance (R = 0.98).

View Article and Find Full Text PDF

Iron (Fe) modified biochar has been widely used for cadmium (Cd) contaminated soil remediation. However, the accompanying anions introduced during the modification process potentially affect the behavior of Cd in soil. In this study, we investigated the distinct Cd immobilization mechanisms by Fe(SO) modified biochar (FSBC) and Fe(NO) modified biochar (FNBC) in a two-year pot experiment.

View Article and Find Full Text PDF

Enhanced Soil Fertility and Carbon Sequestration in Urban Green Spaces through the Application of Fe-Modified Biochar Combined with Plant Growth-Promoting Bacteria.

Biology (Basel)

August 2024

Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, China.

The soil of urban green spaces is severely degraded due to human activities during urbanization, and it is crucial to investigate effective measures that can restore the ecological functions of the soil. This study investigated the effects of plant growth promoting bacteria () and Fe-modified biochar on soil fertility increases and mechanisms of carbon sequestration. Additionally, the effects on C-cycling-related enzyme activity and the bacterial community were also explored.

View Article and Find Full Text PDF

In recent years, the research potential in utilizing biochars as adsorbents in adsorption processes has grown due to their eco-friendly and economical nature. However, biochar often possesses a negative surface charge that limits its affinity for binding anions. Nitric acid washing and pretreatment with Coriolus versicolor can break down the lignocellulosic structure in cotton stalk waste, facilitating the subsequent impregnation of Mg and Fe metal oxides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!