AI Article Synopsis

  • Extracellular vesicles (EVs) are tiny membrane-bound structures released by cells that play a key role in communication between cells and have potential as therapeutic agents and drug delivery systems.
  • EVs have shown promise in preclinical studies for delivering nucleic acids, proteins, and small molecules, and some have even entered early clinical trials targeting cancer and neurodegenerative diseases.
  • However, the advancement of EV-based drug delivery is challenged by variability in sample types and methods, lack of standardization, and ongoing concerns about their safety and effectiveness, though high-quality EV drugs might be developed through more systematic approaches.

Article Abstract

Extracellular vesicles (EVs) are membranous nanovesicles secreted from living cells, shuttling macromolecules in intercellular communication and potentially possessing intrinsic therapeutic activity. Due to their stability, low immunogenicity, and inherent interaction with recipient cells, EVs also hold great promise as drug delivery vehicles. Indeed, they have been used to deliver nucleic acids, proteins, and small molecules in preclinical investigations. Furthermore, EV-based drugs have entered early clinical trials for cancer or neurodegenerative diseases. Despite their appeal as delivery vectors, however, EV-based drug delivery progress has been hampered by heterogeneity of sample types and methods as well as a persistent lack of standardization, validation, and comprehensive reporting. This review highlights specific requirements for EVs in drug delivery and describes the most pertinent approaches for separation and characterization. Despite residual uncertainties related to pharmacodynamics, pharmacokinetics, and potential off-target effects, clinical-grade, high-potency EV drugs might be achievable through GMP-compliant workflows in a highly standardized environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8217305PMC
http://dx.doi.org/10.1016/j.addr.2021.04.027DOI Listing

Publication Analysis

Top Keywords

drug delivery
16
separation characterization
8
extracellular vesicles
8
delivery
5
characterization standardization
4
standardization extracellular
4
drug
4
vesicles drug
4
delivery applications
4
applications extracellular
4

Similar Publications

Due to their superior physicochemical features, chitosan thermosensitive hydrogels are multipurpose platforms that are frequently used in the biomedical industry. Many investigations have been conducted recently to modify their pore dimensions, expansion, biodegradability, stimulus-reaction characteristics, and other characteristics in order to better tailor them to the complex craniofacial tissues. They have been the focus of various studies that have attempted to load biological cargos for therapeutic and regenerative uses in the oro-facial tissues.

View Article and Find Full Text PDF

Noninvasive in vivo imaging of macrophages: understanding tumor microenvironments and delivery of therapeutics.

Biomark Res

January 2025

BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.

Macrophages are pivotal in the body's defense and response to inflammation. They are present in significant numbers and are widely implicated in various diseases, including cancer. While molecular and histological techniques have advanced our understanding of macrophage biology, their precise function within the cancerous microenvironments remains underexplored.

View Article and Find Full Text PDF

Implications of an Individualized Resuscitation Strategy Using Continuous Rhythm and Physiologic Status Assessment During Ongoing CPR.

Resuscitation

January 2025

Department of Medicine, University of Washington, Seattle, WA; King County Emergency Medical Services, Seattle-King County Department of Public Health, Seattle, WA.

Background: Prior studies have proposed defibrillator biosignal algorithms which characterize cardiac arrest rhythm and physiologic status. We evaluated whether a novel, individualized resuscitation strategy that integrates multiple ECG and impedance-based algorithms could reduce CPR interruptions and better align rescuer actions with patient-specific physiology.

Methods: In a retrospective cohort of ventricular fibrillation out-of-hospital cardiac arrests, observed rescuer actions (rhythm analysis, shock delivery, pulse checks, and drug therapy) were compared to hypothetical actions recommended by the proposed individualized strategy.

View Article and Find Full Text PDF

Intratumoral delivery of Mitomycin C using bio-responsive Gellan Gum Nanogel: In-vitro evaluation and enhanced chemotherapeutic efficacy.

Int J Biol Macromol

January 2025

Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Intratumoral drug delivery systems hold immense promise in overcoming the limitations of conventional IV chemotherapy, particularly in enhancing therapeutic efficacy and minimizing systemic side effects. In this study, we introduce a novel redox-responsive intratumoral nanogel system that combines the biocompatibility of natural polysaccharides with the tailored properties of synthetic polymers. The nanogel features a unique cross-linked architecture incorporating redox-sensitive segments, designed to leverage the elevated glutathione levels in the tumor microenvironment for controlled drug release.

View Article and Find Full Text PDF

A novel directly compressible co-processed excipient, based-on rice starch for extended-release of tablets.

Eur J Pharm Biopharm

January 2025

Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Research Center for Development of Local Lanna Rice and Rice Products, Chiang Mai University, Chiang Mai 50200, Thailand. Electronic address:

The development of a direct compression excipient with extended-release property is crucial for improving tablet manufacturing and drug delivery. This research focuses on developing a novel co-processed excipient composed of rice starch (RS), methylcellulose (MC), and colloidal silicon dioxide (CSD) using a wet granulation technique. The ratios of RS: MC (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!