Fungal unspecific peroxygenases (UPOs) are efficient biocatalysts that insert oxygen atoms into nonactivated C-H bonds with high selectivity. Many oxyfunctionalization reactions catalyzed by UPOs are favored in organic solvents, a milieu in which their enzymatic activity is drastically reduced. Using as departure point the UPO secretion mutant from Agrocybe aegerita (PaDa-I variant), in the current study we have improved its activity in organic solvents by directed evolution. Mutant libraries constructed by random mutagenesis and in vivo DNA shuffling were screened in the presence of increasing concentrations of organic solvents that differed both in regard to their chemical nature and polarity. In addition, a palette of neutral mutations generated by genetic drift that improved activity in organic solvents was evaluated by site directed recombination in vivo. The final UPO variant of this evolutionary campaign carried nine mutations that enhanced its activity in the presence of 30% acetonitrile (vol/vol) up to 23-fold over PaDa-I parental type, and it was also active and stable in aqueous acetone, methanol and dimethyl sulfoxide mixtures. These mutations, which are located at the surface of the protein and in the heme channel, seemingly helped to protect UPO from harmful effects of cosolvents by modifying interactions with surrounding residues and influencing critical loops.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.27810DOI Listing

Publication Analysis

Top Keywords

organic solvents
20
directed evolution
8
improved activity
8
activity organic
8
organic
5
solvents
5
evolution unspecific
4
unspecific peroxygenase
4
peroxygenase organic
4
solvents fungal
4

Similar Publications

Understanding how structural modifications affect the photophysics of organic linkers is crucial for their integration into metal-organic frameworks (MOFs) for light-driven applications. This study explores the impact of varying the amine functional group position on two terephthalic acid derivatives─linker and linker ─by investigating their photophysics through a combination of steady-state and ultrafast laser spectroscopy and time-dependent density functional theory (TD-DFT) calculations. With tetrahydrofuran as the solvent, time-correlated single-photon counting revealed a 2-fold increase in the S excited-state lifetime of the molecule with the amine group at the meta position compared with that of the molecule with the amine group at the ortho position.

View Article and Find Full Text PDF

Two Co(II) mixed-ligand metal-organic frameworks (MOFs) based on 2-methylimidazole and trimesate were synthesised at room temperature. The structure and properties of the two MOFs, named material Deutsches Elektronen Synchrotron-1 and -2 (mDESY-1 and mDESY-2), were verified by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), SQUID magnetic susceptibility and N adsorption. The structural analysis indicates that mDESY-1 is a 3D ionic framework with 2-methyl-1-imidazol-3-ium counterions residing in its pores, while mDESY-2 is a 2D neutral framework isostructural to ITH-1, with water as a co-crystallising solvent.

View Article and Find Full Text PDF

Lauryl-NrTP6 lipopeptide self-assembled nanorods for nuclear-targeted delivery of doxorubicin.

Nanoscale

January 2025

Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain.

Targeted delivery offers solutions for more efficient therapies with fewer side effects. Here, lipopeptides (LPs) prepared by conjugation of the nuclear-targeting peptide analogue H-YKQSHKKGGKKGSG-NH (NrTP6) and two lauric acid chains are used to encapsulate the chemotherapeutic agent doxorubicin (DX) through a solvent-exchange protocol. LPs spontaneously form nanosized rod-like assemblies in phosphate buffer.

View Article and Find Full Text PDF

Enhanced Efficiency and Light Stability of Conventional Organic Solar Cells with a p-Type Polymeric Thin Layer on PEDOT:PSS.

Macromol Rapid Commun

January 2025

Institute of Polymer Optoelectronic Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China.

Simultaneous improvement in power conversion efficiency (PCE) and device stability is very important for organic solar cells (OSCs). Herein, oligothiophene-based polymer W19 with excellent solvent resistance is exploited as a polymer thin layer to optimize the active layer morphology and then device efficiency and stability. Polymer W19 possesses a simple skeleton of trifluromethyl-substituted dithienoquinoxaline and quaterthiophene, whose thin layer shows suitable energy level, low surface energy, and strong interchain aggregation, leading to outstanding solvent resistance and excellent hole transport ability.

View Article and Find Full Text PDF

Viridium: A Stable Radical and Its π-Dimerization.

J Am Chem Soc

January 2025

Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, Strasbourg 67000, France.

The discovery of a stable organic radical formed under mild, clean, and efficient light-mediated conditions is reported. The structure of the stable acridinium-based radical photoproduct was unambiguously established by single-crystal X-ray diffraction, mass spectrometry, and in solution by EPR, UV/vis, and NMR spectroscopies. The photochemical mechanism of its formation has been elucidated by photophysical experiments coupled with EPR experiments and theoretical investigations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!