Flower and fruit colors are important agronomic traits. To date, there is no forward genetic evidence that the glutathione S-transferase (GST) gene is responsible for the white flower color in peach (Prunus persica). In this study, genetic analysis indicated that the white-flower trait is monogenetic, is recessive to the non-white allele, and shows pleiotropic effects with non-white-flowered types. The genetic locus underpinning this trait was mapped onto chromosome 3 between 0.421951 and 3.227115 Mb by using bulked segregant analysis in conjunction with whole-genome sequencing, and was further mapped between 0 and 1.178149 Mb by using the backcross 1 (BC ) population. Finally, the locus was fine-mapped within 535.974- and 552.027-kb intervals by using 151 F individuals and 75 individuals from a BC self-pollinated (BC S ) population, respectively. Pp3G013600, encoding a GST that is known to transport anthocyanin, was identified within the mapping interval. The analysis of genome sequence data showed Pp3G013600 in white flowers has a 2-bp insertion or a 5-bp deletion in the third exon. These variants likely render the GST non-functional because of early stop codons that reduce the protein length from 215 amino acids to 167 and 175 amino acids, respectively. Genetic markers based on these variants validated a complete correlation between the GST loss-of-function alleles and white flower in 128 peach accessions. This correlation was further confirmed by silencing of Pp3G013600 using virus-induced gene silencing technology, which reduced anthocyanin accumulation in peach fruit. The new knowledge from this study is useful for designing peach breeding programs to generate cultivars with white flower and fruit skin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.15312 | DOI Listing |
Front Pharmacol
January 2025
School Hospital, Guizhou Medical University, Guiyang, China.
Thunb. (. ) is a shrub or tree of the genus , family Lamiaceae, which is widely distributed in China, Korea, India, Japan and Philippines.
View Article and Find Full Text PDFThe conclusions of the European Food Safety Authority (EFSA) following the peer review of the initial risk assessments carried out by the competent authorities of the rapporteur Member State, the Netherlands, and co-rapporteur Member State, France, for the pesticide active substance spinosad and the assessment of applications for maximum residue levels (MRLs) are reported. The context of the peer review was that required by Commission Implementing Regulation (EU) No 844/2012. The conclusions were reached on the basis of the evaluation of the representative uses of spinosad as insecticide on bulb/dry onions, maize (fodder and grain), sweet corn, grapes (table and wine), lettuce, potato, aubergine, pepper and tomato.
View Article and Find Full Text PDFTree Physiol
January 2025
Department of Fruit Tree Sciences, The Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion, Israel.
Specific cultivars of many commercial fruit tree undergo cycles of heavy fruit load (ON-crop) one year, followed by low fruit load (OFF-crop) the next (termed alternate bearing). Fruit load may affect flowering at various developmental stages, and its presence is suggested to generate a flowering-inhibitory signal. In a previous report, we showed that the presence of fruit induces polar auxin transport from the fruit into the stem, interfering with indole acetic acid (IAA) release from the bud, and thus elevating its levels in the bud meristem.
View Article and Find Full Text PDFPlant Mol Biol
January 2025
Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, China.
Z. armatum is an economically valued crop known for its rich aroma and medicinal properties. This study identified 45 members of the SQUAMOSA-PROMOTER BINDING PROTEIN LIKE (SPL) gene family in the genome of Z.
View Article and Find Full Text PDFGlobal warming changes flowering times of many plant species, with potential impacts on frost damage and their synchronization with pollinator activity. These effects can have severe impacts on plant fitness, yet we know little about how frequently they occur and the extent of damage they cause. We addressed this topic in a thermophilic orchid with a highly specific pollination mechanism, the Small Spider Orchid, RchB, in six populations in Northern Switzerland.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!