Salt stress decreases plant growth prior to significant ion accumulation in the shoot. However, the processes underlying this rapid reduction in growth are still unknown. To understand the changes in salt stress responses through time and at multiple physiological levels, examining different plant processes within a single set-up is required. Recent advances in phenotyping has allowed the image-based estimation of plant growth, morphology, colour and photosynthetic activity. In this study, we examined the salt stress-induced responses of 191 Arabidopsis accessions from 1 h to 7 days after treatment using high-throughput phenotyping. Multivariate analyses and machine learning algorithms identified that quantum yield measured in the light-adapted state (F /F ) greatly affected growth maintenance in the early phase of salt stress, whereas the maximum quantum yield (QY ) was crucial at a later stage. In addition, our genome-wide association study (GWAS) identified 770 loci that were specific to salt stress, in which two loci associated with QY and F /F were selected for validation using T-DNA insertion lines. We characterized an unknown protein kinase found in the QY locus that reduced photosynthetic efficiency and growth maintenance under salt stress. Understanding the molecular context of the candidate genes identified will provide valuable insights into the early plant responses to salt stress. Furthermore, our work incorporates high-throughput phenotyping, multivariate analyses and GWAS, uncovering details of temporal stress responses and identifying associations across different traits and time points, which are likely to constitute the genetic components of salinity tolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.15310 | DOI Listing |
Planta
January 2025
Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
Under salt stress, autophagy regulates ionic balance, scavenges ROS, and supports nutrient remobilization, thereby alleviating osmotic and oxidative damage. Salt stress is a major environmental challenge that significantly impacts plant growth and agricultural productivity by disrupting nutrient balance, inducing osmotic stress, and causing the accumulation of toxic ions like Na. Autophagy, a key cellular degradation and recycling pathway, plays a critical role in enhancing plant salt tolerance by maintaining cellular homeostasis and mitigating stress-induced damage.
View Article and Find Full Text PDFAldose reductase (ALR) is closely related to the plant's response to abiotic stresses. Previous transcriptome data from the salt-tolerant Tritipyrum Y1805 indicated that an ALR-related gene was highly upregulated under salt stress. The gene, TtALR1, was successfully cloned from Y1805, with a coding sequence length of 960 bp.
View Article and Find Full Text PDFHortic Res
January 2025
National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China.
Branched-chain amino acids (BCAAs) are essential amino acids in tomato () required for protein synthesis, which also modulate growth and abiotic stress responses. To date, little is known about their uptake and transport in tomato especially under abiotic stress. Here, the tomato () gene was identified as an amino acid transporter that restored mutant yeast cell growth on media with a variety of amino acids, including BCAAs.
View Article and Find Full Text PDFFront Nutr
January 2025
Process Design and Engineering Cell, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India.
Objective: The study aimed to analyze the safety and effectiveness of the ProBC Plus ( LMG S-31876) supplement across various health parameters, including stress levels, immunoglobulin levels, biochemical parameters, and vital signs.
Methods: A randomized, double-blind, placebo-controlled clinical trial study was conducted involving 50 subjects diagnosed with ailments related to immune system dysfunction and stress related disorders. Patients were treated with ProBC Plus (2 billion colony-forming units [CFU]) along with a placebo capsule administered once daily for a period of 8 weeks.
BBA Adv
October 2024
Department of Biochemistry, Panjab University, Chandigarh 160014, India.
Hal5 gene is involved in halo-tolerance of during high salt stress. Ethanol stress and high salt stress have similarities, as both decrease the availability of water for cells and strain the osmotic homeostasis across the cell membrane. The Hal5 over-expression strain of yeast has more ethanol tolerance, but the Hal5 null mutant strain also has more ethanol tolerance than the wild-type strain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!