Brassinosteroids (BRs) are pivotal phytohormones involved in the control of root development. Boron (B) is an essential micronutrient for plants, and root growth is rapidly inhibited under B deficiency conditions. However, the mechanisms underlying this inhibition are still unclear. Here, we identified BR-related processes underlying B deficiency at the physiological, genetic, molecular/cell biological and transcriptomic levels and found strong evidence that B deficiency can affect BR biosynthesis and signalling, thereby altering root growth. RNA sequencing analysis revealed strong co-regulation between BR-regulated genes and B deficiency-responsive genes. We found that the BR receptor mutants bri1-119 and bri1-301 were more insensitive to decreased B supply, and the gain-of-function mutants bes1-D and pBZR1-bzr1-D exhibited insensitivity to low-B stress. Under B deficiency conditions, exogenous 24-epibrassinolide rescued the inhibition of root growth, and application of the BR biosynthesis inhibitor brassinazole exacerbated this inhibitory effect. The nuclear-localised signal of BES1 was reduced under low-B conditions compared with B sufficiency conditions. We further found that B deficiency hindered the accumulation of brassinolide to downregulate BR signalling and modulate root elongation, which may occur through a reduction in BR6ox1 and BR6ox2 mRNA levels. Taken together, our results reveal a role of BR signalling in root elongation under B deficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.15311DOI Listing

Publication Analysis

Top Keywords

root growth
16
deficiency conditions
8
root elongation
8
root
7
deficiency
6
boron deficiency-induced
4
deficiency-induced root
4
growth
4
growth inhibition
4
inhibition mediated
4

Similar Publications

Insights of cellular and molecular changes in sugarcane response to oxidative signaling.

BMC Plant Biol

January 2025

Bioinformatics Multidisciplinary Environment, IMD, Universidade Federal Do Rio Grande Do Norte, Natal, Brazil.

Significant changes in the proteome highlight essential metabolic adaptations for development and oxidative signaling induced by the treatment of young sugarcane plants with hydrogen peroxide. These adaptations suggest that hydrogen peroxide acts not only as a stressor but primarily as a signaling molecule, triggering specific metabolic pathways that regulate growth and plant resilience. Sugarcane is a crucial crop for sugar and ethanol production, often influenced by environmental signals.

View Article and Find Full Text PDF

Effects of aluminum on metabolism of reactive oxygen species and reactive nitrogen species in root tips of different Eucalyptus species.

BMC Plant Biol

January 2025

Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.

On acidified soil, the growth of Eucalyptus is seriously restricted by aluminum (Al) stress. Therefore, breeding Eucalyptus species with excellent Al tolerance, developing the genetic potential of species, and improving tolerance to Al stress are important for the sustainable development of artificial Eucalyptus forests. By observing the occurrence and distribution of the main reactive oxygen species (ROS) and reactive nitrogen species (RNS) in root tips of Eucalyptus seedlings under Al stress, this study analyzed change in the growth and physiological indexes of Eucalyptus seedlings under Al stress.

View Article and Find Full Text PDF

Background: Zinc finger homeodomain (ZF-HD) belongs to the plant-specific transcription factor (TF) family and is widely involved in plant growth, development and stress responses. Despite their importance, a comprehensive identification and analysis of ZF-HD genes in the soybean (Glycine max) genome and their possible roles under abiotic stress remain unexplored.

Results: In this study, 51 ZF-HD genes were identified in the soybean genome that were unevenly distributed on 17 chromosomes.

View Article and Find Full Text PDF

Inoculation with the PGPB Herbaspirillum seropedicae shapes both the structure and putative functions of the wheat microbiome and causes changes in the levels of various plant metabolites described to be involved in plant growth and health. Plant growth promoting bacteria (PGPB) can establish metabolic imprints in their hosts, contributing to the improvement of plant health in different ways. However, while PGPB imprints on plant metabolism have been extensively characterized, much less is known regarding those affecting plant indigenous microbiomes, and hence it remains unknown whether both processes occur simultaneously.

View Article and Find Full Text PDF

Cyclic nucleotide-gated channel 5 (CNGC5), CNGC6, and CNGC9 (CNGC5/6/9 for simplicity) control Arabidopsis root hair (RH) growth by mediating the influx of external Ca to establish and maintain a sharp cytosolic Ca gradient at RH tips. However, the underlying mechanisms for the regulation of CNGCs remain unknown. We report here that calcium dependent protein kinase 1 (CPK1) directly activates CNGC5/6/9 to promote Arabidopsis RH growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!