A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of green tea-loaded chitosan nanoparticles on leathery dentin microhardness. | LitMetric

Effect of green tea-loaded chitosan nanoparticles on leathery dentin microhardness.

Odontology

Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Cafe Avenue, s/n, Ribeirão Preto, São Paulo, 14040-904, Brazil.

Published: October 2021

The purpose of this study was to assess the effect of a chitosan-based nanoformulation containing green tea on leathery (remaining) dentin subsurface microhardness. Size distribution, polydispersity index (PDI) and zeta potential (mV) of nanoformulations were previously determined by dynamic light scattering (DLS). Human dentin specimens were exposed to Streptococcus mutans for 14 d. Soft dentin were selectively removed by Er:YAG laser (n = 30) or bur (n = 30). Remaining dentin was biomodified with chitosan nanoparticles (Nchi, n = 10) or green tea-loaded chitosan nanoparticles (Gt + Nchi, n = 10) for 1 min. Control group (n = 10) did not receive any treatment. Subsurface microhardness (Knoop) was evaluated in hard (sound) and soft dentin, and then, in leathery dentin and after its biomodification, at depths of 30, 60 and 90 μm from the surface. Nchi reached an average size of ≤ 300 nm, PDI varied between 0.311 and 0.422, and zeta potential around + 30 mV. Gt + Nchi reached an average size of ≤ 350 nm, PDI < 0.45, and zeta potential around + 40 mV. Soft dentin showed significantly reduced microhardness at all depths (p > 0.05). The subsurface microhardness was independent of choice of excavation method (p > 0.05). At 30 µm from the surface, Gt + Nchi increased the leathery dentin microhardness compared to untreated group (p < 0.05). Nchi promoted intermediate values (p > 0.05). Both nanoformulations showed an average size less than 350 nm with nanoparticles of different sizes and stability along the 90-day period evaluated. Subsurface microhardness of bur-treated and laser-irradiated dentin was similar. At 30 µm, the biomodification with Gt + Nchi improved the microhardness of leathery dentin, independently of caries excavation method used.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10266-021-00611-6DOI Listing

Publication Analysis

Top Keywords

leathery dentin
16
subsurface microhardness
16
chitosan nanoparticles
12
average size
12
dentin
10
green tea-loaded
8
tea-loaded chitosan
8
dentin microhardness
8
remaining dentin
8
zeta potential
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!