AI Article Synopsis

  • Nitrogen is crucial for plant development, particularly in flowering, and low nitrogen levels can accelerate flowering, though the specific molecular mechanisms are still unclear.
  • Researchers identified the FBH4 transcription factor as a key player in regulating flowering in response to low nitrogen, noting that changes in its phosphorylation state impact its activity.
  • The study also highlights how the protein SnRK1 negatively affects flowering and nutrient recycling under high nitrogen conditions, ultimately showing how nitrogen levels influence flowering time and plant adaptation to nutrient scarcity.

Article Abstract

Nitrogen (N) is an essential nutrient that affects multiple plant developmental processes, including flowering. As flowering requires resources to develop sink tissues for reproduction, nutrient availability is tightly linked to this process. Low N levels accelerate floral transition; however, the molecular mechanisms underlying this response are not well understood. Here, we identify the FLOWERING BHLH 4 (FBH4) transcription factor as a key regulator of N-responsive flowering in Low N-induced early flowering is compromised in quadruple mutants. We found that FBH4 is a highly phosphorylated protein and that FBH4 phosphorylation levels decrease under low N conditions. In addition, decreased phosphorylation promotes FBH4 nuclear localization and transcriptional activation of the direct target () and downstream florigen () genes. Moreover, we demonstrate that the evolutionarily conserved cellular fuel sensor SNF1-RELATED KINASE 1 (SnRK1), whose kinase activity is down-regulated under low N conditions, directly phosphorylates FBH4. SnRK1 negatively regulates and transcript levels under high N conditions. Together, these results reveal a mechanism by which N levels may fine-tune FBH4 nuclear localization by adjusting the phosphorylation state to modulate flowering time. In addition to its role in flowering regulation, we also showed that FBH4 was involved in low N-induced up-regulation of nutrient recycling and remobilization-related gene expression. Thus, our findings provide insight into N-responsive growth phase transitions and optimization of plant fitness under nutrient-limited conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126780PMC
http://dx.doi.org/10.1073/pnas.2022942118DOI Listing

Publication Analysis

Top Keywords

flowering
9
phosphorylation state
8
flowering bhlh
8
low n-induced
8
low conditions
8
fbh4 nuclear
8
nuclear localization
8
fbh4
7
low
6
conditions
5

Similar Publications

Gibberellin-3 induced dormancy and suppression of flower bud formation in pitaya (Hylocereus polyrhizus).

BMC Plant Biol

January 2025

Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.

Background: Flowering is a complex, finely regulated process involving multiple phytohormones and transcription factors. However, flowering regulation in pitaya (Hylocereus polyrhizus) remains largely unexamined. This study addresses this gap by investigating gibberellin-3 (GA3) effects on flower bud (FB) development in pitaya.

View Article and Find Full Text PDF

Background: Carbosulfan residues in environment is very harmful to human health. The rapid and high sensitive detection of carbosulfan residues is particularly important to guarantee human health and safety. The conventional chromatographic techniques and enzyme inhibition strategies cannot realize on-site and visual detection of carbosulfan.

View Article and Find Full Text PDF

Sugar conditioning combined with nectar nonsugar compounds enhances honey bee pollen foraging in a nectarless diocious crop.

Sci Rep

January 2025

Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.

Recently, it has been shown that sugar‑conditioned honey bees can be biased towards a nectarless dioecious crop as kiwifruit. The challenges for an efficient pollination service in this crop species are its nectarless flowers and its short blooming period. It is known that combined non-sugar compounds (NSCs) present in the floral products of different plants, such as caffeine and arginine, enhance olfactory memory retention in honey bees.

View Article and Find Full Text PDF

Assessment of nutrient storage and translocation in winter harvested Typha latifolia from free-water surface treatment wetland mitigating diffuse agricultural pollution.

Sci Total Environ

January 2025

Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia; Department of Environmental Science, Policy and Management, University of California at Berkeley, USA.

Wetland macrophytes play a critical role in the performance of treatment wetlands (TWs), primarily through nutrient uptake. However, this retention is temporary, as nutrients are released back into the water upon the decomposition of plant litter. The removal of stored nutrients from TWs can be efficiently achieved by harvesting plants during the peak of the growing season, albeit with significant ecological disturbance.

View Article and Find Full Text PDF

Sub-lethal pesticide exposure interferes with honey bee memory of learnt colours.

Sci Total Environ

January 2025

Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabancı University, Tuzla, Istanbul, Türkiye; USDA/ARS/WRRC, Invasive Species and Pollinator Health Research Unit, Davis, CA 95616, USA. Electronic address:

Neonicotinoid pesticide use has increased around the world despite accumulating evidence of their potential detrimental sub-lethal effects on the behaviour and physiology of bees, and its contribution to the global decline in bee health. Whilst flower colour is considered as one of the most important signals for foraging honey bees (Apis mellifera), the effects of pesticides on colour vision and memory retention in a natural setting remain unknown. We trained free flying honey bee foragers by presenting artificial yellow flower feeder, to an unscented artificial flower patch with 6 different flower colours to investigate if sub-lethal levels of imidacloprid would disrupt the acquired association made between the yellow flower colour from the feeder and food reward.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!