Background: Ananas comosus var. bracteatus is a colorful plant used as a cut flower or landscape ornamental. The unique foliage color of this plant includes both green and red leaves and, as a trait of interest, deserves investigation. In order to explore the pigments behind the red section of the chimeric leaves, the green and red parts of chimeric leaves of Ananas comosus var. bracteatus were sampled and analyzed at phenotypic, cellular and molecular levels in this study.

Results: The CIELAB results indicated that the a* values and L* values samples had significant differences between two parts. Freehand sections showed that anthocyanin presented limited accumulation in the green leaf tissues but obviously accumulation in the epidermal cells of red tissues. Transcriptomic and metabolomic analyses were performed by RNA-seq and LC-ESI-MS/MS. Among the 508 identified metabolites, 10 kinds of anthocyanins were detected, with 6 significantly different between the two samples. The cyanidin-3,5-O-diglucoside content that accounts for nearly 95.6% in red samples was significantly higher than green samples. RNA-Seq analyses showed that 11 out of 40 anthocyanin-related genes were differentially expressed between the green and red samples. Transcriptome and metabolome correlations were determined by nine quadrant analyses, and 9 anthocyanin-related genes, including MYB5 and MYB82, were correlated with 7 anthocyanin-related metabolites in the third quadrant in which genes and metabolites showing consistent change. Particularly, the PCCs between these two MYB genes and cyanidin-3,5-O-diglucoside were above 0.95.

Conclusion: Phenotypic colors are closely related to the tissue structures of different leaf parts of Ananas comosus var. bracteatus, and two MYB transcription factors might contribute to differences of anthocyanin accumulation in two parts of Ananas comosus var. bracteatus chimeric leaves. This study lay a foundation for further researches on functions of MYBs in Ananas comosus var. bracteatus and provides new insights to anthocyanin accumulation in different parts of chimeric leaves.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8105979PMC
http://dx.doi.org/10.1186/s12864-021-07642-xDOI Listing

Publication Analysis

Top Keywords

ananas comosus
24
comosus var
24
var bracteatus
24
chimeric leaves
20
anthocyanin-related genes
12
green red
12
leaves ananas
8
parts chimeric
8
red samples
8
analyses anthocyanin-related
8

Similar Publications

Pineapple ( (L.) Merrill) is among the main fruits produced in West Africa. This is also the case for the Republic of Benin, where pineapple fruit is regarded as an important crop for numerous producers in the Southern part of the country.

View Article and Find Full Text PDF

Valorization of pineapple (ANANAS comosus) peel waste for levan production: Assessment of biological activities.

Int J Biol Macromol

January 2025

Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India. Electronic address:

Levan canopies a pivotal role in all the emerging sectors owing to its non-toxic and biodegradable nature. However, their expensive production impeded their commercialization and made them uneconomical. Hence the current work is focused on harnessing the pineapple peel as a viable substrate for bacterial fermentation to promote levan production.

View Article and Find Full Text PDF

Identification, Phylogeny, and Expression Profiling of Pineapple Heat Shock Proteins (HSP70) Under Various Abiotic Stresses.

Int J Mol Sci

December 2024

Key Laboratory of Quality Regulation of Tropical Horticultural Crop in Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.

Pineapple ( (L.) Merr.) is an economically significant and delicious tropical fruit.

View Article and Find Full Text PDF

Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.

View Article and Find Full Text PDF

Following a recent dramatic increase in illegal fishing by Indonesian fishing vessels in Australian waters in 2022, we conducted an extensive survey of coral reef communities covering 33,000 m at Mermaid Reef Marine Park in the Rowley Shoals off north-western Australia in July 2022. Species richness of sea cucumbers was 13 species (three CITES listed) and 6 species of giant clams (all CITES listed). The most abundant sea cucumber species were the low or intermediate value, asexually reproducing species Holothuria atra and H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!