Plasmonic nanostructures exhibiting high optical nonlinearities are widely used in the rapidly growing modern nanotechnology of nonlinear optics including biomedical applications due to their tunable plasmonic behavior. In this work, we investigate the nonlinear optical properties of uniformly distributed Au nanoparticles (NPs) embedded in pre-synthesized sodium-zinc borate glass by the well-known ion-exchange technique for optical limiting (OL) applications. Various techniques such as optical absorption spectroscopy, x-ray photoelectron spectroscopy, Transmission Electron Microscope (TEM), Photoluminescence, Time of Flight secondary mass spectroscopy and the Z scan technique were used for the characterization of these NPs. TEM confirmed spherically shaped Au NPs with varying sizes of up to 16 nm, in agreement with optical absorption spectroscopy. Nonlinear optical (NLO) properties of these Au NPs were investigated by using an open as well as close aperture Z scan technique which exhibited enhanced optical nonlinearities. The two-photon absorption (2PA) coefficients demonstrated an increasing trend while the OL threshold values demonstrated a decreasing trend as a function of heat treatment. The improved 2PA coefficients and decreased OL threshold values endorsed the Au NPs containing glasses as contending materials for the fabrication of promising optical limiters for the protection of eyes and other sensitive instruments from laser induced damages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/abfee6 | DOI Listing |
J Neuroophthalmol
January 2025
Departments of Ophthalmology (DB, G-SY, GTL, RAA) and Neurology (DB, GTL, RAA), Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; and Division of Ophthalmology (AG, GTL, RAA), Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
Background: In children, pseudopapilledema is frequently caused by peripapillary hyperreflective ovoid mass-like structures (PHOMS) or optic disc drusen (ODD). While enhanced depth imaging (EDI) OCT can identify both, lack of cooperation, especially from younger children due to the duration of testing, often necessitates the use of B-scan ultrasound (BSUS). This study investigated whether PHOMS are hyperreflective on BSUS and if BSUS can differentiate PHOMS from ODD.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden.
Rapidly detecting hydrogen leaks is critical for the safe large-scale implementation of hydrogen technologies. However, to date, no technically viable sensor solution exists that meets the corresponding response time targets under technically relevant conditions. Here, we demonstrate how a tailored long short-term transformer ensemble model for accelerated sensing (LEMAS) speeds up the response of an optical plasmonic hydrogen sensor by up to a factor of 40 and eliminates its intrinsic pressure dependence in an environment emulating the inert gas encapsulation of large-scale hydrogen installations by accurately predicting its response value to a hydrogen concentration change before it is physically reached by the sensor hardware.
View Article and Find Full Text PDFOcul Immunol Inflamm
January 2025
Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates.
Purpose: To report a case of biopsy-proven sarcoidosis in a patient with panuveitis and a positive interferon-gamma release assay (IGRA) from a non-endemic tuberculosis (TB) country.
Methods: Case report.
Results: A 26-year-old male from the United Arab Emirates (UAE) presented with granulomatous panuveitis characterized by mutton-fat keratic precipitates, anterior chamber and vitreous cells, and retinal vasculitis.
Nanotechnology
January 2025
Institute of Nonlinear Optics, College of Science, JiuJiang University, Jiangxi 334000, People's Republic of China.
Titanium disulfide quantum dots (TiSQDs) has garnered significant research interest due to its distinctive electronic and optical properties. However, the effectiveness of TiSQDs in electromagnetic interference (EMI) shielding is influenced by various factors, including their size, morphology, monodispersity, tunable bandgap, Stokes shift and interfacial effects. In this study, we propose a systematic approach for the synthesis of TiSQDs with small size (3.
View Article and Find Full Text PDFNanoscale
January 2025
Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.
Magic-angle twisted bilayer graphene (TBLG) has emerged as a versatile platform to explore correlated electron phases driven primarily by low-energy flat bands in moiré superlattices. While techniques for controlling the twist angle between graphene layers have spurred rapid experimental progress, understanding the effects of doping inhomogeneity on electronic transport in correlated electron systems remains challenging. In this work, we investigate the interplay of confinement and doping inhomogeneity on the electrical transport properties of TBLG by leveraging device dimensions and twist angles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!