Circular RNAs (circRNAs) are a group of noncoding RNAs derived from back-splicing events. CircRNA is reported to be involved in various tumor progressions, including glioma. Although there are a few reports of circular RNAs participating in gliomas, it is still unclear whether circular RNAs regulate the occurrence of gliomas. In our research, we found that the expression of circITGA7 in glioma tissues and glioma cells increased significantly. Knocking down circITGA7 can significantly inhibit the proliferation of glioma cells and reduce cell metastasis. Through analysis and dual-luciferase report assay, we found that circITGA7 acts as a sponge for miR-34a-5p targeting VEGFA in glioma. Our study showed that circITGA7 regulates the proliferation and metastasis of glioma cell lines (SW1783&U373) by regulating the miR-34a-5p/VEGFA pathway. In conclusion, our study revealed a regulatory loop for the circITGA7/miR-34a-5p/VEGFA axis to regulate glioma development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8148479PMC
http://dx.doi.org/10.18632/aging.202996DOI Listing

Publication Analysis

Top Keywords

circular rnas
12
glioma
8
glioma cells
8
circitga7
5
circular
4
circular rna
4
rna circitga7
4
circitga7 accelerates
4
accelerates glioma
4
glioma progression
4

Similar Publications

We present the complete mitochondrial genome of from China. The mitogenome of is circular, AT-rich (75.3%), and 15,898 bp in length.

View Article and Find Full Text PDF

Aim: Breast cancer (BC) is the most frequently diagnosed malignancy worldwide, necessitating continued research into its molecular mechanisms. Circular RNAs (circRNAs) are increasingly recognized for their role in various cancers, including BC. This study explores the role of circRNA kinesin family member 4A (circKIF4A) in BC progression and its underlying molecular mechanisms.

View Article and Find Full Text PDF

Nile blue has been widely used in histological staining, fluorescence labeling, and DNA probing, with its intercalation behavior into the DNA helix being well documented. Here, we present a comprehensive investigation to address a current knowledge gap regarding the binding properties of Nile blue to two types of double-stranded RNA (dsRNA): poly(A·U) and poly(I·C), using various biophysical techniques. Absorption and fluorescence spectroscopic studies suggest a significant binding interaction between Nile blue and the two designated dsRNAs, specifically indicating an intercalation binding mode with poly(A·U) and demonstrating a noticeably higher binding affinity compared to poly(I·C).

View Article and Find Full Text PDF

A Smart mRNA-Initiated Theranostic Multi-shRNA Nanofactory for Precise and Efficient Cancer Gene Therapy.

Adv Healthc Mater

January 2025

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.

Despite the significant potential of short hairpin RNA (shRNA)-mediated gene therapy for various diseases, the clinical success of cancer treatment remains poor, partly because of low selectivity and low efficiency. In this study, an mRNA-initiated autonomous multi-shRNA nanofactory (RNF@CM) is designed for in vivo amplification imaging and precise cancer treatment. The RNF@CM consists of a gold nanoparticle core, an interlayer of two types of three-stranded DNA/RNA hybrid probes, one of which is bound to aptamer-inhibited DNA polymerases, and an outer layer of the cancer cell membrane.

View Article and Find Full Text PDF

Comprehensive analysis of the multi-rings mitochondrial genome of Populus tomentosa.

BMC Genomics

January 2025

State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.

Background: Populus tomentosa, known as Chinese white poplar, is indigenous and distributed across large areas of China, where it plays multiple important roles in forestry, agriculture, conservation, and urban horticulture. However, limited accessibility to the mitochondrial (mt) genome of P. tomentosa impedes phylogenetic and population genetic analyses and restricts functional gene research in Salicaceae family.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!