A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Anthropogenic underwater vibrations are sensed and stressful for the shore crab Carcinus maenas. | LitMetric

Anthropogenic underwater vibrations are sensed and stressful for the shore crab Carcinus maenas.

Environ Pollut

Biosciences, College of Life and Environmental Sciences, Hatherly Laboratories, University of Exeter, Stocker Road, Exeter, EX4 4PS, UK; Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile; Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Chile. Electronic address:

Published: September 2021

AI Article Synopsis

  • Acoustic pollution in aquatic environments negatively affects many organisms, yet the vibratory aspect of sound in substrates has been less studied.
  • Researchers focused on the shore crab, Carcinus maenas, and how it responds to underwater vibrations simulating common human activities.
  • Findings reveal that crabs exhibited increased activity and stress in response to these vibrations, with male crabs showing greater responsiveness than females, although oxygen consumption was not affected.

Article Abstract

Acoustic pollution in aquatic environments has increased with adverse effects on many aquatic organisms. However, little work has been done considering the effects of the vibratory component of acoustic stimuli, which can be transmitted in the substrate and propagated into the aquatic medium. Benthic marine organisms, including many invertebrates, are capable of sensing seabed vibration, yet the responses they trigger on organism have received little attention. This study investigates the impact of underwater vibration on the physiology and behaviour of a ubiquitous inhabitant of coastal areas of the northern hemisphere, the shore crab Carcinus maenas. We developed a novel vibratory apparatus with geophones supported on a softly sprung frame to induce a seabed vibration of 20 Hz frequency, as observed during dredging, piling and other anthropogenic activities. The geophone internal mass caused the frame to vibrate in a controlled manner. Our results show that transition from ambient to anthropogenic vibrations induced an increase in activity and antennae beats in shore crabs, indicating perception of the vibratory stimulus and a higher stress level. There was also a trend on sex-specific responses to anthropogenic vibration, with males showing a higher activity level than females. However, no effect of anthropogenic vibrations was found upon oxygen consumption. These results show that anthropogenic underwater vibration induces behavioural responses in Carcinus maenas. This highlights the importance of evaluating man-made vibratory activities on coastal invertebrates and the necessity of evaluating anthropogenic effects on both sexes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2021.117148DOI Listing

Publication Analysis

Top Keywords

carcinus maenas
12
anthropogenic underwater
8
shore crab
8
crab carcinus
8
seabed vibration
8
underwater vibration
8
anthropogenic vibrations
8
anthropogenic
7
vibration
5
underwater vibrations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!