Over the last century, contamination of polycyclic aromatic hydrocarbons (PAHs) has risen tremendously due to the intensified industrial activities like petrochemical, pharmaceutical, insecticides and fertilizers applications. PAHs are a group of organic pollutants with adverse effects on both humans and the environment. These PAHs are widely distributed in various ecosystems including air, soil, marine water and sediments. Degradation of PAHs generally occurs through processes like photolysis, adsorption, volatilization, chemical degradation and microbial degradation. Microbial degradation of PAHs is done by the utilization of diverse microorganisms like algae, bacteria, fungi which are readily compatible with biodegrading/bio transforming PAHs into HO, CO under aerobic, or CH under anaerobic environment. The rate of PAHs degradation using microbes is mainly governed by various cultivation conditions like temperature, pH, nutrients availability, microbial population, chemical nature of PAHs, oxygen and degree of acclimation. Several microbial species including Selenastrum capricornutum, Ralstonia basilensis, Acinetobacter haemolyticus, Pseudomonas migulae, Sphingomonas yanoikuyae and Chlorella sorokiniana are known to degrade PAHs via biosorption and enzyme-mediated degradation. Numerous bacterial mediated PAHs degradation methods are studied globally. Among them, PAHs degradation by bacterial species like Pseudomonas fluorescence, Pseudomonas aeruginosa, Rhodococcus spp., Paenibacillus spp., Mycobacterium spp., and Haemophilus spp., by various degradation modes like biosurfactant, bioaugmentation, biostimulation and biofilms mediated are also investigated. In contrarily, PAHs degradation by fungal species such as Pleurotus ostreatus, Polyporus sulphureus, Fusarium oxysporum occurs using the activity of its ligninolytic enzymes such as lignin peroxidase, laccase, and manganese peroxidase. The present review highlighted on the PAHs degradation activity by the algal, fungal, bacterial species and also focused on their mode of degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.130608 | DOI Listing |
Front Biosci (Landmark Ed)
December 2024
Department of Cardiovascular Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, 410008 Changsha, Hunan, China.
Background: Chronic heart failure (CHF) is a serious cardiovascular condition. Vascular peroxidase 1 (VPO1) is associated with various cardiovascular diseases, yet its role in CHF remains unclear. This research aims to explore the involvement of VPO1 in CHF.
View Article and Find Full Text PDFTurk J Med Sci
December 2024
Department of Pharmacology, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, China.
Background/aim: Doxorubicin (Dox) is a potent anticancer medication. However, due to nephrotoxicity, its clinical application is restricted. (AM) is a plant used in traditional medicine to treat several conditions, including kidney disorders.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
December 2024
Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background And Objective: Hepatocellular carcinoma (HCC) is recognized as one of the major public health problems and deadly malignancies worldwide. Today, the use of compounds of natural origin in the treatment of cancer and other diseases has been of interest to researchers. Marine compounds such as algae have anti-cancer effects.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India.
The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!