The stochastic association of nanoparticles with algae at the cellular level: Effects of NOM, particle size and particle shape.

Ecotoxicol Environ Saf

Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, the Netherlands.

Published: May 2021

Association of nanoparticles (NPs) with algae likely plays a critical role in their transfer in aquatic food chains. Although our understanding of the ecotoxicity and fate of NPs in the environment is increasing, it is still unclear how the physicochemical properties of NPs influence their interaction with algae at cellular levels and how this is reflected at a population level. This is due to the limitation in the existing analytical techniques to quantify the association of NPs with cells. To fill this data gap, we applied the novel technique of single-cell inductively coupled plasma mass spectrometry to quantify the cellular association of gold (Au)-NPs with algal cells (Pseudokirchneriella subcapitata) as a function of particle size, shape (spherical 10 nm, spherical 60 nm, spherical 100 nm, rod-shaped 10 × 40 nm, and rod-shaped 50 × 100 nm), and surface chemistry [citrate and natural organic matter (NOM) coating] on a cell-by-cell basis. The association of Au-NPs with algal cells was found to be a random probability following a so-called stochastic process; after 72 h of exposure, less than 45% of the cell population accumulated NPs on their surface. The number of Au-NPs per cell was found to be heterogeneously distributed as some cells were associated with a significantly higher number (e.g. up to 600 spherical 10 nm particles per cell) of Au-NPs than other cells present in the medium. The presence of NOM on the surface of the particles decreased the percentage of cells containing NPs except for the spherical 60 nm Au-NPs. We conclude that some algae within a population can accumulate NPs on their surface and this accumulation is influenced by the size, shape, and surface chemistry of NPs. It is important to understand how NPs may enter aquatic food chains to assess the possible risk.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2021.112280DOI Listing

Publication Analysis

Top Keywords

nps
9
association nanoparticles
8
algae cellular
8
particle size
8
aquatic food
8
food chains
8
au-nps algal
8
algal cells
8
size shape
8
spherical 10 nm
8

Similar Publications

In this study, an alginate-chitosan (AL-CS) nanocomplex decorated with vitamin C coated iron oxide nanoparticles (FeO-vit C NPs) was investigated as a novel nanoiron fortification agent. The FeO-vit C NPs decorated on AL-CS nanocomplex underwent comprehensive characterization, including zeta potential, fourier transform infrared spectroscopy, X-ray diffraction, and UV-vis spectroscopy. The transmission electron microscopy (TEM) analysis confirmed the decoration of FeO-vit C NPs on AL-CS nanocomplex.

View Article and Find Full Text PDF

The aim of the present work is to investigate the photocatalytic degradation of propyl paraben (propyl para-hydroxybenzoate, PrP) using CuO-ZnO-NPs photocatalyst followed by the identification of the oxidation by-products. The CuO-ZnO-NPs material, synthesized using a green chemistry approach, was used as a photocatalyst for the removal of PrP. The nanoparticles were characterized by XRD, XRF, diffuse reflectance spectroscopy, ATG/DTG, FTIR, SEM-EDX, BET and FRX techniques.

View Article and Find Full Text PDF

An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.

View Article and Find Full Text PDF

Background: The healthcare sector faces a growing threat from the rise of highly resistant microorganisms, particularly Methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDR P. aeruginosa). Facing the challenge of antibiotic resistance, nanoparticles have surfaced as promising substitutes for antimicrobial therapy.

View Article and Find Full Text PDF

Bactericidal activity of gold and silver nanoparticles in solution and supported on polyhihydroxybutyrate nanospheres.

Int J Biol Macromol

January 2025

Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y Av. 24 Sur, Col. San Manuel Ciudad Universitaria, Puebla C.P. 72570, Mexico. Electronic address:

This work presents the effect of Polyhydroxybutyrate nanospheres (PHB-NSs) on the bacterial activity of plasmonic nanoparticles (NPs). The PHB-NSs were used as a substrate for the metal-NPs. Silver and gold NPs in colloidal solution were synthesized by chemical reduction, while PHB-NSs were synthesized by a physical method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!