Deposition of zinc cobaltite nanoparticles onto bismuth vanadate for enhanced photoelectrochemical water splitting.

J Colloid Interface Sci

Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea. Electronic address:

Published: October 2021

During the past few decades, photoelectrochemical (PEC) water splitting has attracted significant attention because of the reduced production cost of hydrogen obtained by utilizing solar energy. Significant efforts have been invested by the scientific community to produce stable ternary metal oxide semiconductors, which can enhance the stability and increase the overall production of oxygen. Herein, we present the ternary metal oxide deposition of ZnCoO as a route to obtain a novel photocatalyst layer on BiVO to form BiVO/ZnCoO a novel composite photoanode for PEC water splitting. The structural, topographical, and optical analyses were performed using field emission scanning electron microscopy, X-ray diffraction, high-resolution transmission electron microscopy, and UV-Vis spectroscopy to confirm the structure of the ZnCoO grafted over BiVO. A remarkable 4.4-fold enhancement of the photocurrent was observed for the BiVO/ZnCoO composite compared with bare BiVO under visible illumination. The optimum loading of ZnCoO over BiVO yields unprecedented stable photocurrent density with an apparent cathodic shift of 0.46 V under 1.5 AM simulated light illumination. This is also evidenced by the flat-band potential change through Mott-Schottky analysis, which reveals the formation of p-ZnCoO on n-BiVO. The improvement in the PEC performance of the composite with respect to bare BiVO is ascribed to the formation of thin passivating layer of p-ZnCoO on n-BiVO which improves the kinetics of interfacial charge transfer. Based on our study, we have gained an in-depth understanding of the BiVO/ZnCoO composite as high potential in efficient PEC water splitting devices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.04.116DOI Listing

Publication Analysis

Top Keywords

water splitting
16
pec water
12
ternary metal
8
metal oxide
8
electron microscopy
8
bivo/zncoo composite
8
bare bivo
8
p-zncoo n-bivo
8
bivo
5
deposition zinc
4

Similar Publications

Design and synthesis of autogenous growth NiFe bimetallic phosphide catalysts on a nickel iron foam-like substrate for efficient overall water splitting.

J Colloid Interface Sci

January 2025

Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China. Electronic address:

The design of low-cost, highly active, and stable electrocatalysts is pivotal for advancing water electrolysis technologies. In this study, carbonyl iron powder (CIP) was anchored within the pores of nickel foam (NF) by electroplating nickel, creating nickel iron foam-like (NFF-L) substrates. Subsequently, nickel-iron hydroxide (NiFe-OH) was synthesized on the NFF-L substrate employing an autogenous growth strategy, followed by a phosphating treatment that produced a nanoflower-like NiFe bimetallic phosphide heterostructure catalyst (FeP-NiP@NFF-L).

View Article and Find Full Text PDF

Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.

View Article and Find Full Text PDF

Background And Objectives: Regular physical activity (PA) and Mediterranean diet (MeDi) adherence independently improve glycemic control and clinical outcomes in type 2 diabetes mellitus (T2DM). This study examined the associations between PA, body composition (BC), MeDi adherence, and glycemic control in Dalmatian T2DM patients.

Materials And Methods: A cross-sectional study was conducted at the University Hospital of Split (November-December 2023) during an open call for T2DM patients.

View Article and Find Full Text PDF

Asphalt pavement, widely utilized in transportation infrastructure due to its favourable properties, faces significant degradation from chloride salt erosion in coastal areas and winter deicing regions. In this study, two commonly used asphalt binders, 70# base asphalt and SBS (Styrene-Butadiene-Styrene)-modified asphalt, were utilized to study the chloride salt erosion effect on asphalt pavement by immersing materials in laboratory-prepared chloride salt solutions. The conventional properties and adhesion of asphalt were assessed using penetration, softening point, ductility, and pull-off tests, while Fourier transform infrared spectroscopy (FTIR) elucidated the erosion mechanism.

View Article and Find Full Text PDF

The collapse of surface goaf beneath highways can result in instability and damage to roadbeds. However, filling the goaf areas with foam concrete can significantly enhance the stability of the roadbeds while considerably reducing the costs of filling materials. This study analyzes the effects on destructive characteristics, mechanical properties, stress-strain curve features, and relevant metrics, while also observing the microstructure of basalt fiber-calcined gangue-silty clay foam concrete (BF-CCG-SCFC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!