Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Covalent linkage between the single-walled carbon nanotube (SWCNT) and CYP101 through a specific site of the enzyme can provide a novel method of designing efficient enzyme electrodes using this prototype cytochrome P450 enzyme. We have chemically modified the SWCNT with linker 4-carboxy phenyl maleimide (CPMI) containing maleimide functional groups. The enzyme was covalently attached on to the SWCNT through the maleimide group of the linker (CPMI) to the thiolate group of the surface exposed Cys 58 or Cys 136 of the CYP101 forming a covalently immobilized protein on the nanotube. Thin film of the modified SWCNT-CPMI-CYP101conjugate was made on a glassy carbon (GC) electrode. Direct electrochemistry of the substrate (camphor)-bound enzyme was studied using this immobilized enzyme electrode system and the redox potential was found to be -320mV vs Ag/AgCl (3 M KCl), which agrees with the redox potential of the substrate bound enzyme reported earlier. The electrochemically driven enzymatic mono-oxygenation of camphor by this immobilized enzyme electrode system was studied by measurement of the catalytic current at different concentrations of camphor. The catalytic current was found to increase with increasing concentration of camphor in presence of oxygen. The product formed during the catalysis was identified by mass-spectrometry as hydroxy-camphor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2021.114204 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!