AI Article Synopsis

  • Recent studies have shown significant changes in phenological events due to climate change, focusing mainly on temperate plants, while research on tropical species remains limited due to scarce long-term data.
  • The study utilized herbarium specimens of four endemic Melastomataceae species from the Brazilian Atlantic Forest, analyzing flowering and fruiting patterns over nearly a century (1920-2018) and their relationship with climate variables.
  • Findings revealed varied responses among the species to climate change, including delays or advancements in flowering and fruiting, demonstrating the complex effects of climate change in tropical forests and emphasizing the need for more research in this area.

Article Abstract

Changes in phenological events have been vastly documented in face of recent global climate change. These studies are concentrated on temperate plants, and the responses of tropical species are still little understood, likely due to the lack of long-term phenological records in the tropics. In this case, the use of herbarium specimens to gather phenological data over long periods and wide geographic areas has emerged as a powerful tool. Here, we used four Melastomataceae species endemic to the Brazilian Atlantic Forest to evaluate phenological patterns and alterations as responses to recent climate changes. Phenological data were gathered from Reflora Virtual Herbarium specimens collected between 1920 and 2018, and analyzed with circular statistics applied to the intervals 1920-1979, 1980-1999, and 2000-2018. The effects of temperature range, average temperature, precipitation, and photoperiod on flowering and fruiting of each species were tested using multiple linear regressions. Through circular statistics, we detected changes, mostly delays, in the flowering of Miconia quinquedentata, Pleroma clavatum and P. trichopodum, and in the fruiting of M. acutiflora, P. clavatum and P. trichopodum. We also found that flowering and fruiting occurrence were related to local climatic conditions from months prior to the collections. We found marked phenological variations over the decades and also that these variations are associated to global climate change, adding up to the large body of evidence from higher latitudes. Our results also support herbarium collections as an important source for long-term tropical phenological studies. The lack of consistent patterns of responses among the four species (e.g. fruiting delayed two months in P. clavatum and advanced one month in M. acutiflora) suggests that climate change has unequal effects across tropical forests. This highlights the urgent need for further research to understand and forecast the ecological implications of these changes in global ecosystems processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8104365PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0251360PLOS

Publication Analysis

Top Keywords

climate change
16
phenological
8
responses climate
8
herbarium collections
8
changes phenological
8
global climate
8
herbarium specimens
8
phenological data
8
circular statistics
8
flowering fruiting
8

Similar Publications

Climate change aggravates bird mortality in pristine tropical forests.

Sci Adv

January 2025

Biological Dynamics of Forest Fragments Project, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus 69060-001, Amazonas, Brazil.

Stable understory microclimates within undisturbed rainforests are often considered refugia against climate change. However, this assumption contrasts with emerging evidence of Neotropical bird population declines in intact rainforests. We assessed the vulnerability of resident rainforest birds to climatic variability, focusing on dry season severity characterized by hotter temperatures and reduced rainfall.

View Article and Find Full Text PDF

The rising frequency and severity of landslides in the vulnerable Himalayan region of India threaten human settlements and critical infrastructure. This growing issue demands urgent action and innovative strategies to mitigate risks and bolster the resilience of affected communities and infrastructure in this fragile area. The research explores the use of Alnus nepalensis for slope stabilization, illustrated by a case study near Ukhimath, Uttarakhand, India, and elucidates the potential ecological niche of Alnus in the temperate region of Uttarakhand using well-dispersed species occurrence records along with environment.

View Article and Find Full Text PDF

The side-chain directions in nonfullerene acceptors (NFAs) strongly influence the intermolecular interactions in NFAs; however, the influence of these side chains on the morphologies and charge carrier dynamics of Y6-based acceptors remains underexplored. In this study, we synthesize four distinct Y6-based acceptors, i.e.

View Article and Find Full Text PDF

Background: Climate change poses a significant risk to kidney health, and countries with lower national wealth are more vulnerable. Yet, citizens from lower-income countries demonstrate less concern for climate change than those from higher-income countries. Education is a key covariate.

View Article and Find Full Text PDF

Diversity and dynamics of multiple symbionts contribute to early development of broadcast spawning reef-building coral .

Appl Environ Microbiol

January 2025

CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.

Sexual reproduction and recruitment enhance the genetic diversity and evolution of reef-building corals for population recovery and coral reef conservation under climate change. However, new recruits are vulnerable to physical changes and the mechanisms of symbiosis establishment remain poorly understood. Here, , a broadcast spawning hermaphrodite reef-building coral, was subjected to settlement and juvenile growth in flow-through seawater at 27.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!