Online monitoring of the volatile compounds during the tea roasting process is crucial to find the optimum roasting conditions and improve the quality of green tea. In this work, synchrotron radiation photoionization mass spectrometry (SR-PIMS) was utilized to online monitor the evolved gaseous compounds during the tea roasting process. By virtue of "soft" ionization and fast data acquisition characteristics of SR-PIMS, dozens of aroma compounds including alcohols, aldehydes, furans, and nitrogen- and sulfur-containing species were detected and identified in real time. Moreover, 5-hydroxymethylfurfural (5-HMF), the key intermediate of Maillard reactions, was found with high sensitivity. Evolution processes of all the products could be observed via the time- and temperature-resolved profiles in N and the air. Dehydration was found to be the first step during roasting. Oxygen in the air was found to accelerate the formation rate of various stable species and intermediates in the course of the thermal treatment of fresh green tea. The formation mechanisms of evolved compounds such as three sulfur-containing compounds, i.e., dimethyl sulfide, hydrogen sulfide, and methanethiol, could be proposed according to the step-by-step formation process. The time-resolved results were demonstrated to be applicable in the evaluation of different roasting processes by statistical analysis. The optimum tea roasting temperature and duration are proposed to be around 200 °C and 1000 s.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jasms.1c00012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!