Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
3-O-trans-caffeoyloleanolic acid (COA) is a pentacyclic triterpenoid compound, with significant anti-inflammatory effects. In this study, we report the protective effects of COA on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explored its mechanism of action. LPS was used to construct in vivo mouse ALI models to observe the effects of COA pretreatment on lung pathology, inflammation, and oxidative stress. In vitro, mouse alveolar macrophages MH-S cells were cultured and stimulated with LPS to investigate the effects of COA pretreatment on inflammation and oxidative stress. Western blotting was used to investigate the expression of iNOS, TLR4, p-p65, p-AKT, and p-PI3K from in vivo and in vitro samples. The results showed that COA significantly improved lung injury, inhibited neutrophil infiltration, prevented macrophage infiltration, inhibited the release of inflammatory factors, reduced oxidative stress, and down-regulated the expression of iNOS, TLR4, p-p65, p-AKT, and p-PI3K in ALI mice caused by LPS. In vitro, COA inhibited the release of inflammatory factors, reduced oxidative stress, and down-regulated the expression of iNOS, TLR4, p-p65, p-AKT, and p-PI3K in MH-S cells stimulated with LPS. Of interest, the protective effects of COA were significantly attenuated in MH-S cells pretreated with the PI3K phosphopeptide activator 740Y-P with no effect on TLR4 expression observed. Taken together, these findings confirm the protective effects of COA on ALI. We further demonstrate that the anti-inflammation and antioxidant effects of COA are mediated through its effects on PI3K/AKT and potentially TLR4.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cbdd.13856 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!