A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

3-O-trans-caffeoyloleanolic acid improves acute lung injury via anti-inflammation and antioxidative stress-involved PI3K/AKT pathway. | LitMetric

3-O-trans-caffeoyloleanolic acid (COA) is a pentacyclic triterpenoid compound, with significant anti-inflammatory effects. In this study, we report the protective effects of COA on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explored its mechanism of action. LPS was used to construct in vivo mouse ALI models to observe the effects of COA pretreatment on lung pathology, inflammation, and oxidative stress. In vitro, mouse alveolar macrophages MH-S cells were cultured and stimulated with LPS to investigate the effects of COA pretreatment on inflammation and oxidative stress. Western blotting was used to investigate the expression of iNOS, TLR4, p-p65, p-AKT, and p-PI3K from in vivo and in vitro samples. The results showed that COA significantly improved lung injury, inhibited neutrophil infiltration, prevented macrophage infiltration, inhibited the release of inflammatory factors, reduced oxidative stress, and down-regulated the expression of iNOS, TLR4, p-p65, p-AKT, and p-PI3K in ALI mice caused by LPS. In vitro, COA inhibited the release of inflammatory factors, reduced oxidative stress, and down-regulated the expression of iNOS, TLR4, p-p65, p-AKT, and p-PI3K in MH-S cells stimulated with LPS. Of interest, the protective effects of COA were significantly attenuated in MH-S cells pretreated with the PI3K phosphopeptide activator 740Y-P with no effect on TLR4 expression observed. Taken together, these findings confirm the protective effects of COA on ALI. We further demonstrate that the anti-inflammation and antioxidant effects of COA are mediated through its effects on PI3K/AKT and potentially TLR4.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cbdd.13856DOI Listing

Publication Analysis

Top Keywords

effects coa
24
oxidative stress
16
lung injury
12
protective effects
12
mh-s cells
12
expression inos
12
inos tlr4
12
tlr4 p-p65
12
p-p65 p-akt
12
p-akt p-pi3k
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!