The exact duration of viable SARS-CoV-2 shedding in kidney transplant recipients (KTRs) remains unclear. Here, we retrospectively investigated this issue using cell cultures of SARS-CoV-2 RT-PCR-positive nasopharyngeal samples (n = 40) obtained from 16 KTRs with symptomatic COVID-19 up to 39 days from symptom onset. A length of viable SARS-CoV-2 shedding >3 weeks from the onset of symptoms was identified in four KTRs (25%). These results suggest that a significant proportion of KTRs can shed viable SARS-CoV-2 for at least 3 weeks, which may favor the emergence of new variants. Based on these data, we recommend prolonging the isolation of KTRs with COVID-19 until negative SARS-CoV-2 RT-PCR testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8222938PMC
http://dx.doi.org/10.1111/ajt.16636DOI Listing

Publication Analysis

Top Keywords

viable sars-cov-2
16
kidney transplant
8
transplant recipients
8
sars-cov-2 shedding
8
sars-cov-2
6
ktrs
5
long-term shedding
4
viable
4
shedding viable
4
sars-cov-2 kidney
4

Similar Publications

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants are a continuous threat to human life. An urgent need remains for simple and fast tests that reliably detect active infections with SARS-CoV-2 and its variants in the early stage of infection. Here we introduce a simple and rapid activity-based diagnostic (ABDx) test that identifies SARS-CoV-2 infections by measuring the activity of a viral enzyme, Papain-Like protease (PLpro).

View Article and Find Full Text PDF

Syndromic multiplex panel testing enables simultaneous detection of multiple respiratory pathogens, but limited data is available on the comparative diagnostic performance of different testing systems. In this multicenter prospective study, we aimed to compare the QIAstat-Dx Respiratory Panel 2.0 (QIAstat-Dx-RP2.

View Article and Find Full Text PDF

Background: Adults classified as immunosuppressed have been disproportionately affected by the COVID-19 pandemic. Compared to the immunocompetent, certain patients are at increased risk of suboptimal vaccine response and adverse health outcomes if infected. However, there has been insufficient work to pinpoint where these risks concentrate within the immunosuppressed spectrum; surveillance efforts typically treat the immunosuppressed as a single entity, leading to wide confidence intervals.

View Article and Find Full Text PDF

Rapid detection of SARS-CoV-2 RNA using a one-step fast multiplex RT-PCR coupled to lateral flow immunoassay.

BMC Infect Dis

December 2024

Laboratory of Molecular Epidemiology and Experimental Pathology, LR16IPT04, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, LR16IPT04, Tunisia.

Background: The COVID-19 has put emphasis on pivotal needs for diagnosis and surveillance worldwide, with the subsequent shortage of diagnostic reagents and kits. Therefore, it has become strategic for the countries to access diagnostics, expand testing capacity, and develop their own diagnostic capabilities and alternative rapid accurate nucleic acid diagnostics that are at lower costs. Here, we propose a visual SARS-CoV-2 detection using a one-step fast multiplex reverse transcription-PCR (RT-PCR) amplification coupled to lateral flow immunoassay detection on a PCRD device (Abingdon Health, UK).

View Article and Find Full Text PDF

Currently, COVID-19 is still striking after 4 years of prevalence, with millions of cases and thousands of fatalities being recorded every month. The virus can impact other major organ systems, including the gastrointestinal tract (GIT), cardiovascular, central nervous system, renal, and hepatobiliary systems. The resulting organ dysfunction from SARS-CoV-2 may be attributed to one or a combination of mechanisms, such as direct viral toxicity, disruptions in the renin-angiotensin-aldosterone system (RAAS), thrombosis, immune dysregulation, and ischemic injury due to vasculitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!