A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Antihypersensitivity effect of betanin (red beetroot extract) via modulation of microglial activation in a mouse model of neuropathic pain. | LitMetric

Background: Neuropathic pain (NeP) medications have several side effects that affect NeP patients' quality of life. Betanin, the most common betacyanin pigment, has been shown to have potent antioxidant and anti-inflammatory properties in vivo; thus, it has potential as a healthcare treatment. In this study, we focused on betanin (red beetroot extract) as a potential therapy for NeP.

Methods: Mice model of NeP were made by chronic constriction injury (CCI), and the development of mechanical hypersensitivity was confirmed using the von Frey test. Motor coordination and locomotor activity were assessed using open field tests and rotarod tests, respectively. The expression level of glial markers in the spinal cords was analyzed by immunostaining. The direct effects of betanin on microglial cells were investigated using primary cultured microglial cells.

Results: In CCI model mice, repeated betanin treatment, both intraperitoneally and orally, attenuated developing mechanical hypersensitivity in a dose-dependent manner without impairing motor coordination. Betanin treatment also attenuated mechanical hypersensitivity that had developed and prevented the onset of mechanical hypersensitivity in CCI mice. Microglial activation in the spinal cord is known to play a key role in the development of NeP; betanin treatment reduced CCI-induced microglial activation in the spinal cord of model mice. Moreover, in primary microglia cultured cells, the activation of microglia by lipopolysaccharide application was suppressed by betanin treatment.

Conclusion: Betanin treatment appears to ameliorate mechanical hypersensitivity related to CCI-induced NeP in mice by inhibiting microglial activation.

Significance: This article supports findings of the effect of betanin on NeP and provides a potential therapeutic candidate for NeP. Furthermore, elucidating the underlying mechanism of the effect of betanin on microglial activation could assist the development of new treatments for chronic pain.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ejp.1790DOI Listing

Publication Analysis

Top Keywords

mechanical hypersensitivity
20
microglial activation
16
betanin treatment
16
betanin
10
betanin red
8
red beetroot
8
beetroot extract
8
neuropathic pain
8
motor coordination
8
betanin microglial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!