Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: In contrast to the majority of existing techniques for reconstruction of the medial patellofemoral ligament (MPFL), the technique described in this article uses the adductor magnus muscle tendon to gain a flat, broad graft, leaving its distal femoral insertion intact, and does not require drilling within or near the femoral physis. It also allows for soft tissue patellar fixation and could facilitate anatomic MPFL reconstruction in skeletally immature patients.
Purpose: To evaluate the anatomic and structural properties of the native MPFL and the adductor tendon (AT), followed by biomechanical evaluation of the proposed reconstruction.
Study Design: Descriptive laboratory study.
Methods: The morphological and topographical features of the AT and MPFL were evaluated in 12 fresh-frozen cadaveric knees. The distance between the distal insertion of the AT on the adductor tubercle and the adductor hiatus, as well as the desired length of the graft, was measured to evaluate this graft's application potential. Load-to-failure tests were performed to determine the biomechanical properties of the proposed reconstruction construct. The construct was placed in a uniaxial testing machine and cyclically loaded 500 times between 5 and 50 N, followed by load to failure, to measure the maximum elongation, stiffness, and maximum load.
Results: The mean ± SD length of the AT was 12.6 ± 1.5 cm, and the mean distance between the insertion on the adductor tubercle and adductor hiatus was 10.8 ± 1.3 cm, exceeding the mean desired length of the graft (7.5 ± 0.5 cm) by 3.3 ± 0.7 cm. The distal insertion of the AT was slightly proximal and posterior to the insertion of the MPFL. The maximum elongation after cyclical loading was 1.9 ± 0.4 mm. Ultimately, the mean stiffness and load to failure were 26.2 ± 7.6 N/mm and 169.7 ± 19.2 N, respectively. The AT graft failed at patellar fixation in 2 of the initially tested specimens and at the femoral insertion in the remaining 10.
Conclusion: The described reconstruction using the AT has potential for MPFL reconstruction. The AT graft presents a graft of significant volume, beneficial anatomic topography, and adequate tensile properties in comparison with the native MPFL following the data from previously published studies.
Clinical Relevance: Given its advantageous anatomic relationship as an application that avoids femoral drilling and osseous patellar fixation, the AT may be considered a graft for MPFL reconstruction in skeletally immature patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/03635465211009540 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!