Objective: Sleep deprivation is known to affect driving behavior and may lead to serious car accidents similar to the effects from e.g., alcohol. In a previous study, we have demonstrated that the use of machine learning techniques allows adequate characterization of abnormal driving behavior after alprazolam and/or alcohol intake. In the present study, we extend this approach to sleep deprivation and test the model for characterization of new interventions. We aimed to classify abnormal driving behavior after sleep deprivation, and, by using a machine learning model, we tested if this model could also pick up abnormal driving behavior resulting from other interventions.

Methods: Data were collected during a previous study, in which 24 subjects were tested after being sleep-deprived and after a well-rested night. Features were calculated from several driving parameters, such as the lateral position, speed of the car, and steering speed. In the present study, we used a gradient boosting model to classify sleep deprivation. The model was validated using a 5-fold cross validation technique. Next, probability scores were used to identify the overlap of driving behavior after sleep deprivation and driving behavior affected by other interventions. In the current study alprazolam, alcohol, and placebo are used to test/validate the approach.

Results: The sleep deprivation model detected abnormal driving behavior in the simulator with an accuracy of 77 ± 9%. Abnormal driving behavior after alprazolam, and to a lesser extent also after alcohol intake, showed remarkably similar characteristics to sleep deprivation. The average probability score for alprazolam and alcohol measurements was 0.79, for alcohol 0.63, and for placebo only 0.27 and 0.30, matching the expected relative drowsiness.

Conclusion: We developed a model detecting abnormal driving induced by sleep deprivation. The model shows the similarities in driving characteristics between sleep deprivation and other interventions, i.e., alcohol and alprazolam. Consequently, our model for sleep deprivation may serve as a next reference point for a driving test battery of newly developed drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15389588.2021.1914837DOI Listing

Publication Analysis

Top Keywords

sleep deprivation
40
driving behavior
36
abnormal driving
24
driving
13
machine learning
12
deprivation model
12
sleep
10
deprivation
10
behavior
9
model
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!