Background: Fanconi anemia (FA) is an inherited bone marrow failure syndrome associated with characteristic dysmorphology primarily caused by biallelic pathogenic germline variants in any of 22 different DNA repair genes. There are limited data on the specific molecular causes of FA in different ethnic groups.
Methods: We performed exome sequencing and copy number variant analyses on 19 patients with FA from 17 families undergoing hematopoietic cell transplantation evaluation in Pakistan. The scientific literature was reviewed, and we curated germline variants reported in patients with FA from South Asia and the Middle East.
Results: The genetic causes of FA were identified in 14 of the 17 families: seven FANCA, two FANCC, one FANCF, two FANCG, and two FANCL. Homozygous and compound heterozygous variants were present in 12 and two families, respectively. Nine families carried variants previously reported as pathogenic, including two families with the South Asian FANCL founder variant. We also identified five novel likely deleterious variants in FANCA, FANCF, and FANCG in affected patients.
Conclusions: Our study supports the importance of determining the genomic landscape of FA in diverse populations, in order to improve understanding of FA etiology and assist in the counseling of families.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372062 | PMC |
http://dx.doi.org/10.1002/mgg3.1693 | DOI Listing |
Mol Ther Nucleic Acids
March 2025
Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
Fanconi anemia (FA) is a congenital multisystem disorder characterized by early-onset bone marrow failure (BMF) and cancer susceptibility. While gene addition and repair therapies are being considered as treatment options, depleted hematopoietic stem cell (HSC) pools, poor HSC mobilization, compromised survival during transduction, and increased sensitivity to conventional conditioning strategies limit eligibility for FA patients to receive gene therapies. As an alternative approach, we explored protein replacement by mRNA delivery via lipid nanoparticles (LNPs).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Classical radiation biology as we understand it clearly identifies genomic DNA as the primary target of ionizing radiation. The evidence appears rock-solid: ionizing radiation typically induces DSBs with a yield of ~30 per cell per Gy, and unrepaired DSBs are a very cytotoxic lesion. We know very well the kinetics of induction and repair of different types of DNA damage in different organisms and cell lines.
View Article and Find Full Text PDFViruses
December 2024
Key Laboratory of Biosafety Defense (Naval Medical University), Ministry of Education, Naval Medical University (Second Military Medical University), Shanghai 200433, China.
Unlike other ubiquitin-like family members, UBL5 is structurally and functionally atypical, and a novel role in various biological processes and diseases has been discovered. UBL5 can stabilize the structure of the spliceosome, can promote post-transcriptional processing, and has been implicated in both DNA damage repair and protein unfolding reactions, as well as cellular mechanisms that are frequently exploited by viruses for their own proliferation during viral infections. In addition, UBL5 can inhibit viral infection by binding to the non-structural protein 3 of rice stripe virus and mediating its degradation.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA.
Background/objectives: The enzyme ubiquitin-specific protease 44 (USP44) is a deubiquitinating enzyme with identified physiological roles as a tumor suppressor and an oncogene. While some binding partners and substrates are known for USP44, the identification of other interactions may improve our understanding of its role in cancer. We therefore performed a proximity biotinylation study that identified products of several known cancer genes that are associated with USP44, including a novel interaction between BRCA2 and USP44.
View Article and Find Full Text PDFTurk J Haematol
January 2025
Hacettepe University, Faculty of Medicine, Department of Pediatric Hematology, Ankara, Türkiye.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!